
D1.1 Overall Architecture

Contract no. 034707 www.mpower-project.eu

Middleware Platform for eMPOWERing cognitive disabled
and elderly

 MPOWER Project Deliverable:

SIXTH FRAMEWORK PROGRAMME:
PRIORITY 2.5.11 EINCLUSION

SPECIFIC TARGETED RESEARCH OR
INNOVATION PROJECT

Deliverable id:

Overall Architecture
 D1.1

Key Information from "Description of Work" (from the Contract)

Deliverable Description This deliverable describes the structure and underlying concepts for the
MPOWER overall architecture. The description is focused around the Service-
Oriented Reference Architecture, the MPOWER services and actors, and the
information models that are used. A short description on how to apply the
architecture in terms of model driven development is provided as background.

Dissemination Level CO=Confidential (Consortium Members + Commission)

Deliverable Type R = Report

Original due date
(month number/date)

Month 6/15/21

Release number/date V0.1 2007.04.01

Authorship Information

Editor (person/ partner): Ståle Walderhaug / SINTEF

Erlend Stav / SINTEF

Partners contributing ETK, ARC, UCY

Reviewed by (person/
partner)

 Page 1 of 87

D1.1 Overall Architecture

Checked by and released
(person/partner)

Marius Mikalsen /SINTEF

Date of release 2008-10-14

 Page 2 of 87

D1.1 Overall Architecture

Release History
Release Date Milestone Approved Document eRoom Release description /changes made

number issued by

name/org

type: either version

“Master” or

Annex Id

Master 14 First phase deliverable of D1.1 0.1 April 1,
2007

Master 19 Second deliverable of D1.1. Inserted
HL7 dynamic SOA diagrams and
deployment platform details

0.2 Septemb
er 26,
2007

Master 24 Final deliverable of D1.1. With
updated service descriptions and all
sections complete

0.3 October
14, 2008

 Page 3 of 87

D1.1 Overall Architecture

MPOWER Consortium
MPOWER (Contract No. 034707) is a Specific Targeted Research or Innovation Project
(STREP) within the 6th Framework Programme, Priority 2.5.11 (eInclusion). The consortium
members are:

SINTEF ICT (Project Coordinator) Ericsson Nikola Tesla d.d.
NO-7465 Trondheim, Norway Address

Contact person: Marius Mikalsen Contact person: Ivan Benc
Email: marius.mikalsen@sintef.no Email: ivan.benc@ericsson.com

ARC Seiberdorf research GmbH Psykiatrien i Vestfold HF
Wien, Austria Tønsberg, Norway

Contact person: Barbara Prazak Contact person: Torild Holthe
Email: barbara.prazak@arcsmed.at

Email: torhild.holthe@aldringoghelse.no

Uniwersytet Jagillonski Collegium
Medicum

TB-Solutions Advanced Technologies
S.L.

Krakow, Poland Zaragoza, Spain

Contact person: Mariusz Duplaga Contact person: Mayte Hurtado
Email: mmduplag@cyf-kr.edu.pl Email: hurtadom@tb-solution.com

University of Cyprus Dimension Informatica
Nicosia, Cyprus Valencia, Spain

Contact person: Eleni Themistokleous Contact person: Juan Jose Cubillos-Esteve
Email: eleni.themistokleous@cs.ucy.ac.cy Email: j.cubillos@dimension-informatica.es

 Page 4 of 87

mailto:marius.mikalsen@sintef.no
mailto:ivan.benc@ericsson.com
mailto:barbara.prazak@arcsmed.at
mailto:torhild.holthe@aldringoghelse.no
mailto:mmduplag@cyf-kr.edu.pl
mailto:hurtadom@tb-solution.com
mailto:eleni.themistokleous@cs.ucy.ac.cy
mailto:j.cubillos@dimension-informatica.es

D1.1 Overall Architecture

Table of Contents

..3 Release History
..4 MPOWER Consortium

..5 Table of Contents
...8 Table of Figures

...9 List of Tables
 ...10 1 Executive summary
 ...12 2 Introduction

2.1 ..12 Role of this deliverable
2.2 ...12 Relationship to other MPOWER deliverables
2.3 ...12 Structure of this document

 ...14 3 MPOWER Target System
3.1 ..14 Static Structure
3.2 ..16 System in Use

 ...18 4 The MPOWER Framework
4.1 ...18 MDSD HealthCare Framework
4.2 ...19 MPOWER Architecture
4.3 ...19 MPOWER UML Extensions
4.4 ...19 MPOWER Middleware
4.5 ..19 MPOWER Applications

 ...20 5 The MPOWER Development Domain: Actors and Assets
5.1 ..20 Development Actors (stakeholders)
5.2 ..21 Environment Actors (systems)
5.3 ...22 Domain Assets

5.3.1 ..22 Dictionaries
5.3.2 ...23 Standards

 ...25 6 MPOWER Architecture and Platform
6.1 ...25 MPOWER Reference Architecture

6.1.1 ..25 Conceptual Service Model
6.1.2 ..26 Architectural styles and principles

6.2 ..26 MPOWER SOA Architecture
6.2.1 ...26 Conceptual Service Architecture
6.2.2 ...27 SOA Reference Architecture

6.3 MPOWER Information Models...29
6.3.1 ..30 Process of defining information models

 ...32 7 MPOWER Middleware Services
7.1 ...32 Communication Services - (Logical diagram)
7.2 ...33 Information Services - (Logical diagram)
7.3 ...34 Management Services - (Logical diagram)
7.4 ...34 Security Services - (Logical diagram)
7.5 ...35 Sensor Services - (Logical diagram)

 ...37 8 MPOWER Methodology
8.1 ..37 Model-Driven Software Development

8.1.1 ...38 OMG’s Model Driven Architecture (MDA)
8.1.2 ..38 Model Transformation and Code Generation
8.1.3 ...39 Meta-models, UML Profiles and UML Patterns

8.2 SOA, MDSD and HealthCare - a way to improve the systems’ compliance to
standards..40

 Page 5 of 87

D1.1 Overall Architecture

8.2.1 ...40 Conceptual Model
8.2.240 Create UML Profile and Model Transformation from Healthcare Standard
8.2.341 Create Healthcare Middleware Service using UML Healthcare Profile

8.3 ...43 MDA Tool Support for Specifying Services in MPOWER
8.3.1 ...44 Information Modelling – HL7 standard messages
8.3.2 ...44 Modelling: Computation Independent Models - User needs
8.3.346 Modelling: Platform Independent Models - Service Specification
8.3.446 Modelling: Platform Specific Models - WSDL Models and Code
8.3.5 ...47 The MPOWER Tool Chain
8.3.6 ..48 Tool Chain Example

8.4 ...49 Where MDA should be used in MPOWER
 ...50 9 MPOWER Application Platform

9.1 ...51 MPOWER Recommended Deployment Platform
9.1.1 ...51 Application Server
9.1.2 ..52 Business Process Execution
9.1.3 ...53 Databases and Data Access
9.1.4 ..53 Messaging
9.1.5 ..53 Communication networks
9.1.6 ...53 Firewall Issues

10 ..54 Related work
10.1 ...54 Healthcare Service Specification Project (HSSP)
10.2 ...54 Open Healthcare Framework

...55 References
Appendix A ..56 IBM Reference Architecture SOA

 ..56 A.1 An architectural template for SOA
 ..57 A.2 IBM SOA Architectural template and MPOWER Platform
 ..57 A.3 Modelling styles using this reference architecture

A.3.158 Component (or Service component or Enterprise component)
A.3.2 ...59 Composite (or Composite services)

Appendix B ..60 UML Profiles for Homecare
 ...60 B.1 Introduction
 ..61 B.2 Background and Related work
 ...61 B.3 Methods

B.3.1 ...62 Activity 1: Capture Domain Knowledge
B.3.2 ...62 Activity 2: Designing a Toolchain for MDD in Homecare
B.3.363 Activity 3: Refine the MPOWER toolchain and develop a DSML
 ...63 B.4 Results

B.4.1 ..63 Activity 1: Conceptual Domain models
B.4.2 ...64 Activity 2: The MPOWER Toolchain
B.4.3 Activity 3: Refined Toolchain - Mapping of Domain Concepts to DSML -
UML Profile ..65
B.4.4 ...65 Homecare UML profile
B.4.5 ..66 SOA Homecare UML Profile
 ...68 B.5 Discussion
 ...69 B.6 Concluding remarks

Appendix C ...72 MDSD and Interoperability
 ..72 C.1 Abstract:
 ...72 C.2 Introduction
 ..73 C.3 Immature MDSD tools and need for evaluations
 ...74 C.4 Many Systems, Many Standards
 ...74 C.5 A MDSD Framework for HealthCare

 Page 6 of 87

D1.1 Overall Architecture

 ...74 C.6 Results
C.6.1 ...74 Example of MDSD Healthcare Framework in Homecare
C.6.2 ..75 A Simple UML Profile for HomeCare
C.6.3 ..75 The Healthcare Information Systems
 ...77 C.7 Discussion
 ...78 C.8 Future work
 ...78 C.9 Conclusion

C.10 ...78 References
Appendix D ..80 Reusable Actors and Services

 ...80 D.1 Introduction
 ..81 D.2 Methods and Materials
 ...81 D.3 Results
 ...83 D.4 Discussion
 ...83 D.5 References

 Page 7 of 87

D1.1 Overall Architecture

Table of Figures
.. 15 Figure 1: Instance of a MPOWER Target System

............. 16 Figure 2: Example of a Typical MPOWER-based Smarthome - Call Center system
.. 18 Figure 3: The MPOWER Technological Overview

.. 20 Figure 4 Overview of development actors
.. 25 Figure 5 SOA Conceptual Model

.................... 27 Figure 6: Dynamic SOA as described in SOA4HL7 Architecture document [7]
.. 29 Figure 7: The MPOWER SOA Reference Architecture

... 30 Figure 8 Process of defining information models
.. 32 Figure 9: MPOWER Service Categories

... 33 Figure 10: Detailed view of the communication services
.. 33 Figure 11 Detailed view of the information services
... 34 Figure 12 Detailed view of the management services

... 35 Figure 13 Detailed view of the security services
... 36 Figure 14 Detailed view of the sensor services

.. 39 Figure 15 : The MDA models. Figure based on [22]
.. 40 Figure 16: High-level conceptual process model

Figure 17: Creating a UML Healthcare profile and Model transformation to support a
Healthcare Information Standard .. 41
Figure 18: Creating reusable Healthcare Middleware Services using Healthcare UML Profile
and Model Transformations .. 42
Figure 19: Creating a Healthcare Application using Healthcare UML Profile, and Model
Transformation and reusing Middleware Service(s) ... 43

... 45 Figure 20: Use Cases for Management scenarios.
............................ 45 Figure 21: Use Case "Stakeholder management" and the related scenarios

46 Figure 22: Features derived from Stakeholder management and Add plan element use cases
. 46 Figure 23: Service rationale. The MedicationManagment service implements five features

... 46 Figure 24: The Service Model with UML Stereotypes
... 48 Figure 25: The MPOWER Tool Chain and Artefacts

.. 49 Figure 26: WSDL model for ActorManagement Service
... 50 Figure 27: Example of MPOWER system deployment

.. 56 Figure 28 IBM SOA Reference Architecture
... 57 Figure 29 MPOWER Reference Architecture

..................................... 58 Figure 30 Cooperation between services and enterprise components
.. 58 Figure 31 Explanation of component in SOA story

... 59 Figure 32 Way of building composite services
...................................... 62 Figure 33 The three main project activities and their work products

........................ 64 Figure 34 Diagram showing the main concepts in a smart homecare domain
............................. 64 Figure 35 The Service-oriented view on a typical homecare environment

... 66 Figure 36 First version of Homecare UML Profile
.. 68 Figure 37 The Homecare SOA UML Profile diagram

... 75 Figure 38: A subset of the CONTSYS CarePlan concept
.. 75 Figure 39: The Care Center System PIM

.. 76 Figure 40: The GP EHR Homecare Extension PIM
... 76 Figure 41: Java PSM for the Care Center System

.. 77 Figure 42: Java PSM for the GP EHR HomeCare Extension
Figure 43: The iterative model-driven development process used to identify actors and
services. Artefacts are shown as rectangles whereas the activities are denoted as rectangles
with rounded corners. .. 81

 Page 8 of 87

D1.1 Overall Architecture

82 Figure 44: The ActorModel showing the elements of the system, stakeholder and role parts.
Figure 45: The relationships between healthcare professional actors and roles as defined in the
ActorModel ... 82
Figure 46: Actors, Roles and Use cases in the usecase diagram for Calendar Management
services .. 82
Figure 47: The service categories in the ServiceModel. The elements of each category are
resuable services.. 83

List of Tables
... 24 Table 1: Different types of messages exchanged in healthcare

.. 51 Table 2: Platform artefacts and implementation technologies
Table 3. Table describing the proposed stereotypes in and tagged values in the Homecare
UML profile .. 65

............. 67 Table 4. List of stereotypes and tagged values in the SOA Homecare UML Profile

 Page 9 of 87

D1.1 Overall Architecture

1 Executive summary
A core deliverable from the MPOWER Project is the architectural specifications of the
services and components that will enable developers to rapidly create new and interoperable
applications to support elderly and cognitive disabled in a smart-house environment.

The technological components of the MPOWER solution are comprised of four core parts: 1)
MDSD (Model-Driven Software Development) Healthcare Framework, 2) MPOWER
Architecture, 3) MPOWER UML Extensions, and 4) MPOWER Middleware. In addition,
MPOWER Applications (5) will be developed using the MDSD Healthcare Framework and
the MPOWER Middleware.

• The MDSD Healthcare Framework (1) has guidelines for the middleware and
application development process, tool selection and configuration. Focus is on
Model-Driven Software development tools and techniques. The MDSD approach is
described in a separate chapter.

• The MPOWER Architecture (2) builds on the concept of Service-Oriented
Architectures (SOA). More specifically, MPOWER uses the reference architecture
for SOA specified by IBM to structure the services and components that are a part of
the MPOWER Middleware (4).

• The MPOWER UML Extensions part (3) provides a formal MPOWER domain
specific language to (1) and (2) to represent the concepts and services in the form of
two UML Profiles.

• The MPOWER Middleware is a collection of reusable services and components,
specified in UML with extensions (3) following the structure given in (2) and the
guidelines in (1).

pkg Simplified Ov erv iew

MPOWER Architecture

MDSD HealthCare Framework

MPOWER Middleware Serv ices

MPOWER Applications

MPOWER UML Extensions

1

3 2 4

5

«use»

«use»

«use»

«use»

«use»

«use»

Based on user scenarios and needs, five categories of services are included in the MPOWER
Middleware (4). The categories are:

• Communication Services: services for sending messages and notifications to users
and systems.

• Information Services: services setting and getting information for individual plan,
calendar, medication list, and knowledge sources.

• Management Services: services for managing services, users, access rights and
system contexts

 Page 10 of 87

D1.1 Overall Architecture

• Security Services: services for authentication and authorization of users and system
components.

• Sensor Services: services for configuring (add, remove, adjust) devices and
retrieving sensor information.

Four appendices are included in the deliverable: a description of the IBM SOA Reference
Architecture, a scientific paper from MOTHIS 2008, presenting the UML Profiles developed
to extend the UML core with homecare concepts, a scientific paper from MEDINFO 2007
presenting the MPOWER MDSD and interoperability concepts, and a scientific paper from
MIE 2008 presenting the reusable Actors and Service defined in MPOWER.

 Page 11 of 87

D1.1 Overall Architecture

2 Introduction

2.1 Role of this deliverable
The purpose of this document is to specify the MPOWER Overall Architecture. This
architecture describes all architectural aspects of an MPOWER-based information system,
including guidelines for applying the architecture.

The document should enable architects and developers to

• Understand which type of systems that can be built using the MPOWER middleware

• Define which actors that are involved in the development process

• Document the rationale for the middleware building blocks based on the user
scenarios, usecases and features developed in WP7

• Understand and use the MPOWER Reference Architecture

• Understand the SOA concepts and usage of MPOWER middleware building blocks

• Understand how to implement and add building blocks to the MPOWER middleware

• Understand how to deploy and run MPOWER services

The document is not:

• A documentation of a specific MPOWER-based information system

To accomplish the defined purposes, the document describes not only the proposed Reference
Architecture but also briefly the process of applying it in the design and development
processes.

The primary audience for this document is system architects and developers that

• Will apply the MPOWER middleware in the design and / or development of a
software system

• Will specify or update the MPOWER middleware

• Need to understand the architecture of a MPOWER based software system

2.2 Relationship to other MPOWER deliverables
• D.1.2 Developers Handbook. D1.2 provides details about the development process

• D.1.3 Service LifeCycle model: D1.3 provides details about the use and maintenance
of the services in MPOWER

• D7.1 User scenarios and needs: The basis for the service identification

• Service design documents (D2.2, D3.1, D3.2, D4.2 and D5.2) are all based on the
MPOWER architecture.

2.3 Structure of this document
This chapter has given a brief overview of the role of this document, and its relation to ther
deliverables in MPOWER.

3In Chapter , a technical overview is provided, giving an overview of the main parts of
MPOWER and how these are related. It includes a presentation of the architecture and

 Page 12 of 87

D1.1 Overall Architecture

middleware which is the foundation for the MPOWER applications, but also the MPOWER
UML Extensions and MDSD framework which will guide and simplify the development of
healthcare applications.

5Chapter the actors and artefacts involved in development of MPOWER middleware,
services, and applications are presented, including development actors and artefacts as well as
environment systems and artefacts such as dictionaries, standards and patterns.

Chapter 6 presents the architecture of MPOWER in more detail. The reference architecture as
well as MPOWER’s SOA architecture is described.

7In Chapter a further description of the MPOWER middleware is presented, including the
main categories of services defined: communication, information, management, security, and
sensor services.

8Chapter gives an introduction to how model driven architecture will be applied in
MPOWER. It includes an introduction to MDA, motivation for why to MDA and how it can
improve the development of healthcare applications and more details on how an MDA tool-
chain can be established for MPOWER.

Chapter 9 presents the MPOWER application platform, focusing on concrete technologies
and implementations.

Chapter 10 describes two related initiatives, namely the HSSP project and the Open
Healthcare Framework initiative.

The appendixes present further reference and background material. In Appendix A the IBM
SOA reference architecture, on which the MPOWER reference architecture is built, is
presented in more detail. Appendix B presents the UML profiles that extend the core UML
specification with smart homecare information. Appendix C describes the overall concept of
using MDSD to improver interoperability of healthcare information systems. Finally,
Appendix D describes how central modelling constructs such as actor models and service
models can be reused across project, organizations and national borders to further improve
adherance to standards and thus interoperability.

 Page 13 of 87

D1.1 Overall Architecture

3 MPOWER Target System
This document describes the overall architecture of a distributed healthcare information
system based on the MPOWER development principles and running on a MPOWER defined
platform. In other words, the target system, as defined in IEEE 1471:2000, includes services
and components that are specified and reused from the MPOWER project.

3.1 Static Structure
This section will define the target system in terms of MPOWER Services and the MPOWER
Service domain; smart homes that support elderly and cognitive disabled.

Four concepts are relevant:

• Smart Home: the residence of a user that needs assistance from smart sensors and a
supporting organization.

• Care Center: A supporting organization responsible for managing and providing care
and support to a Subject of Care – the person receiving care and assistance.

• MPOWER Service Platform: a set of software services and components offering
secure interfaces to access local and central communication and information services.
The interfaces use the HL7 messaging standard as a syntactical and semantical
platform to the other instances of the MPOWER Service Platform and MPOWER
Common Services.

• MPOWER Common Services: a set of shared and reusable information and
communication services enabling the development and deployment of smart home
care solutions.

 Page 14 of 87

D1.1 Overall Architecture

Smart Home Care Center

SmartPhone with GPS
and orientation sensor

Printer
(Calendar)

Subject of Care

Healthcare
Professional

Wireless
Network

Surveillance
Monitor

VTC
Individual Plan

System

Control Center
Care Station

Care Center Staff

Alarm Central

HomeCare
Station

Indoor Positioning
Device

Electronic Pill
Dispenser with reminder

and network

MPOWER Common Services

MPOWER Service Platform MPOWER Service Platform

H
L7

m

es
sa

g e
s

H
L7

m

es
sa

ge
s

Intranet

Fire and water
Sensor

Movement
Sensor

HL7
messages

Figure 1: Instance of a MPOWER Target System

Figure 1 shows an instance of the MPOWER Target System where a Smart Home is
connected to a Care Center through the MPOWER Service Platform and the MPOWER
Common Services. From the Care Center, the staff and care personnel can monitor and
respond to sensor alarms from the Smart Home. Services like video teleconferencing (VTC)
and positioning is supported by the MPOWER Service Platform. Access control, messaging
and information sharing are typical services to be provided by the MPOWER Common
Services.

 Page 15 of 87

D1.1 Overall Architecture

Figure 2 shows a simplified software service structure of the system shown in Figure 1. In
accordance with the Service Oriented Architecture concept[1, 2], the MPOWER services are
specified as self-contained services that are available across the enterprise that can be evoked
through standard protocols both internally and externally. In MPOWER, the standard message
format used for service interfaces is HL7 v3 messages. Figure 2 shows that the MPOWER
Service Platform at the Smart Home consists of one service called Sensor Service. The
HomeCare Application uses this service and external services located at the Healthcare
Network Services and Care Center nodes. The information is transferred using HL7
messages.

The External Notification Service is deployed as a MPOWER Common Service and shared
by the Healthcare Network Services organization. CalendarManagement and
CalendarSynchronizer services are deployed to a server at the Care Center and exposed
externally through the CalendarService interface.

cmp Calendar Example

Care CenterHealthcare Network ServicesSmart Home

CalendarSynchronizerServiceCalendarManagementServiceSensorService

Hom eCare
Application CareControl

Application

Calendar SystemSMS-EMAIL
Sys tem

SMS Email

ExternalNotifcationServiceSensorService
CalendarService

CalendarSystem

SensorKIT

ExternalNotification

MPOWER
Service
Platform

MPOWER
Common
Services

MPOWER Service
Platform

Individual Plan
Sys tem

IndividualPlan

«HL7Messages»

«HL7Messages»

«HL7Messages»

«use»«use»

«use»

«HL7Messages»

«HL7Messages»

«HL7Messages»

«use»«use» «use»

Figure 2: Example of a Typical MPOWER-based Smarthome - Call Center system

3.2 System in Use
Figure 1 and Figure 2 show examples of a MPOWER-based system in a distributed
environment where the subject of care (also known as the patient) and the caregivers are
separated geographically. This is opposed to a nursing home or hospital solution where both
are in the same building (-complex) and traditional information systems concepts are
applicable.

The main functions offered by a MPOWER-based system are:

• Information sharing between Care Center and Smart Home:

o Medication and Calendar information: patients, caregivers and family
members have access to updated medication and calendar information. The
level of access can be configured for each group. Reminder functionality is a
key feature

 Page 16 of 87

D1.1 Overall Architecture

o Messaging: the ability to securely send messages between patients,
caregivers, family members and other registered stakeholders in the system

o Education material and Q&A: people suffering from dementia can get
assistance from information systems that provide education material and
guides for a variety of everyday problems and activities.

• Monitoring of Smart Home from Care Center

o Safety sensors with alarming: domotic sensor networks such as water flow
monitors, motion detection and temperature sensors is installed in the
patient’s home to improve the safety and security for the patients and their
family.

o Physiological monitoring of patient: patients requiring medical surveillance
can connect physiological sensors such as pulseoximetry measurement
devices to the smart home system. The measurements will be captured, stored
and transferred to the care center.

o Location and position sensors: in some cases, outdoor and indoor location
sensor systems can be installed to monitor the movements of a patient. This is
especially relevant for people with dementia.

• Flexible configuration of system characteristics

o Easy configuration of new sensors and information systems: for patients with
dementia, the required level of ICT support will change over time. Therefore
the system provides flexible configuration mechanisms, allowing new
services to be added easily, both before and after first installation in the
patient’s home.

o Context aware monitoring: to tailor the “smartness” of the smart home care
system, the system provides a configurable context manager service that
specifies the system behaviour based on the status of context variables such
as sensors, time and personal requirements.

 Page 17 of 87

D1.1 Overall Architecture

4 The MPOWER Framework
The technological components of the MPOWER solution are comprised of four core parts:

1) MDSD (Model-Driven Software Development) Healthcare Framework

2) MPOWER Architecture

3) MPOWER UML Extensions

4) MPOWER Middleware

In addition, MPOWER Applications will be developed using the MDSD Healthcare
Framework and the MPOWER Middleware (e.g. the proof of concept applications developed
in MPOWER work package 6).

pkg Simplified Overv iew

MPOWER Arc hitecture

+ MPOWER HL7 Information Model
~ MPOWER PIM
~ MPOWER PSM
+ MPOWER Reference Architecture

MDSD HealthCare Framework

+ D1.1 MPOWER Overall Architecture
+ D1.2: MPOWER Developer Handbook
+ MPOWER Toolchain Guide
+ HealthCare MDSD Tranformation Scripts

MPOWER Middleware

+ MPOWER Information Services
+ MPOWER Interoperabil ity Services
+ MPOWER Management Services
+ MPOWER Security Services
+ MPOWER Sensor Services

MPOWER Applications

+ Proof of Concept 1:Poland
+ Proof of Concept 2: Norway

MPOWER UML Extensions

+ HL7 Homecare Message UML Profile
+ SOA UML Profi le

«use»

«use»

«use»

«use»

«use»

«use»

Figure 3: The MPOWER Technological Overview

The four core parts of MPOWER and the applications are shown as packages illustrated in
Figure 3, and are all related through use and dependency relationships. The packages are
described further in the following subsections.

4.1 MDSD HealthCare Framework
The MDSD HealthCare Framework provides guidelines for the middleware and application
development process, tool selection and configuration.

• Using the concepts from MPOWER UML Profiles, model transformation scripts will
create Platform Specific Models (PSMs) and code that have attributes, operations and
optionally some supporting classes, required for interoperable information exchange
between systems based on the international standards supported by MPOWER

• Using the Reference Architecture from the MPOWER Architecture, it provides
guidance to designing MPOWER-based applications.

• Using the MPOWER Middleware, it provides structure and pattern templates for
designing MPOWER-based applications

 Page 18 of 87

D1.1 Overall Architecture

4.2 MPOWER Architecture
The MPOWER Architecture package consists of the Reference Architecture, MPOWER HL7
Information models, and UML models that specify reusable services and components. Using
UML Patterns defined in the MDSD Healthcare Framework, and Profiles defined in the
MPOWER UML Extensions, domain-specific and technology independent UML models are
described as Platform Independent Models (PIMs). The PIMs can be transformed into PSMs
adding platform specific mappings using the transformation scripts described in the
framework.

4.3 MPOWER UML Extensions
The MPOWER UML Extensions provide standards-based UML Profiles (stereotypes, tagged
values and constraints) and model transformation scripts. The UML Profiles define concepts
based on international standards such as HL7 and CEN TC251 EN12967/13606 incorporating
the standards into the design of the software system. The MPOWER project focuses primarily
on HL7 messaging, but the concept of using UML extensions can be reused for other
standards as long as they are specified at a sufficient degree of formality. Two UML Profiles
have been specified in the project, namely the Homecare UML Profile and the SOA
Homecare UML Profile as presented in Appendix B.

4.4 MPOWER Middleware
The MPOWER Middleware holds reusable and compiled (runnable) services and components
that can be easily utilized by application developers. The MPOWER services and components
are organized into five functional categories; information services, interoperability services,
management services, security services and sensor services. They are structured according to
the packages and layers defined in the MPOWER Reference Architecture described in the
MPOWER Architecture Package. The reusable services and components are implementations
of the Platform Independent Models (PIM) and Platform Specific Models (PSM) in the
MPOWER Architecture. Using the provided model transformation and the guidelines in the
Developer Handbook, new platform specific services and components can be added to the
MPOWER Middleware as new technological platforms are being introduced.

4.5 MPOWER Applications
Two Proof-of-Concept applications have been developed using the MPOWER Middleware
services as the core artefacts. To guide the developer, the MDSD Framework (the developer
handbook) provides a description of which tools that should be used and how to configure
them. It also provides a guideline for how to develop new generic and reusable middleware
services and components to be included in the MPOWER Middleware.

 Page 19 of 87

D1.1 Overall Architecture

5 The MPOWER Development Domain: Actors and
Assets

5.1 Development Actors (stakeholders)
The following is a brief overview of the different development actors involved in the
development, installation and management of the MPOWER platform and application. The
different actors are described further in the D1.3 Service Lifecycle Model document.

Administrator

Application Developer

Core M iddle ware
Developer

Dev ice Adaptor
Developer

Dev ice Integrator

Platform Architect

Middlew are Serv ice
Developer

Tool Developer

Administrator

Application Developer

Core M iddle ware
Developer

Dev ice Adaptor
Developer

Dev ice Integrator

Platform Architect

Middlew are Serv ice
Developer

Tool Developer

Figure 4 Overview of development actors

• The Platform Architect develops the service architecture, identifies services and
generates service specifications for the middleware. Together with the system owner
and national standardization bodies (not included in this hierarchy), the architect will
choose architectural styles and standards to conform to. A popular style that is the
core of MPOWER, is the Service Oriented Architecture.

• The Core Middleware Developer develops the generic core of the middleware. The
core provides the minimum set of services and components required to implement
functional MPOWER Services.

 Page 20 of 87

D1.1 Overall Architecture

• The Tool Developer develops the MDSD toolchain which will enable the other
developer roles to more efficiently develop services and applications based on the
MPOWER middleware.

• The Middleware Service Developer will use the core middleware services to
implement MPOWER services. MPOWER services are specific for the smarthome
and homecare domains and provide valuable functionality to application developers.

• Application Developers will use the MPOWER services to develop end user
applications for the smarthome and/or homecare domain.

• The Device Adaptor Developer creates adaptors which enable a device / set of
devices to work with the middleware.

• The Device Integrator will install and set up devices for integration with the
middleware services.

• The Administrator will install the platform on servers and user site. The administrator
will also manage the applications, user rights and handles system exceptions.

5.2 Environment Actors (systems)
When designing, developing, deploying or maintaining systems for homecare it is of utmost
importance to identify and understand the homecare system’s relation to environment actors.
Typical environment actors include information systems, sensor systems and communication
systems. The homecare system will interface these systems and it is important to document
the details about why and how.

Environment actor categories:

• Information Systems: Systems that provide information and / or information services
through a defined interface. Typical information systems are patient administrative
systems, calendar systems, medication systems or systems that provides services for
verifying the structure and / or validity of an information element.

• Sensor Systems: Systems that provides measured information through a defined
interface. A sensor can be both physiological and non-physiological. Automation
services rely on sensor information from e.g. door sensors, water-temperature
sensors, light sensors and movement sensors. A sensor system can be composed of
several sensor-s/systems).

• Communication Systems: To communicate information from the user’s home, a
communication system must be used. Typical networks include fixed networks
(xDSL), LAN, WLAN, GSM/GPRS, PSTN. The communication system may require
special protocols, formats and security mechanism.

• Online information resources: This includes sources of information that are available
on the Internet for free or through a subscription. These information sources are
different from the “Information Systems” category on several points including:
reliability, ownership, accessibility and access mechanisms (normally an Internet
Browser such as Opera, Firefox, Safari or Internet Explorer).

For each environment actor the following characteristics should be described:

• Type of actor: according to the categories defined above

 Page 21 of 87

D1.1 Overall Architecture

• Owner: The owner of the environment actor. Typically this means the person or
organization that must be contacted in order to access the services or information that
the actor provides.

• Use pattern: The situations in which the environment actor can / should be used. Can
be described using pre-condition, post-condition and invariants. A UML Sequence
diagram or Activity diagram can be clarifying.

• Interface details: The protocols required to access the Environment Actor such as
network protocols, messaging protocols and possibly security mechanisms. If
relevant, operations on the interfaces (e.g. Web Service WSDL) should be described
or referenced.

• Where to find more information: The main location for acquiring more information.
Preferably an organization or person. A website reference is insufficient since it may
be changed on a long term.

5.3 Domain Assets
In section 5.2 the categories of environment actors were described. These actors use artefacts
such as dictionaries, standards, patterns, components or documents. In this section a list of
typical artefacts relevant for the development of a architecture is provided.

5.3.1 Dictionaries
The healthcare domain involves a plethora of professions and cultures, each having their own
way of expressing different phenomena, situations or concepts. This often leads to
misunderstanding and misinterpretations of communication across professions, departments
and cultures.

There are many ways to overcome lack of a common terminology and understanding of
concepts.

- Thesauri: A thesaurus is a list of terms used for a certain application or domain. A
thesaurus is intended to be complete for its domain and can also contain a list of
synonyms for each preferred term. A thesaurus is also called a “controlled vocabulary”

- Nomenclatures A nomenclature assigns codes to medical concepts, and medical
concepts can be combined according to specific rules to form more complex concepts.
This leads to a large number of possible code combinations.

- Ontologies A common way to express a dictionary in a domain is to use an ontology.
Gruber 1 has defined ontology as: “An ontology is a formal explicit specification of a
shared conceptualisation”. A conceptualisation, in this context, refers to an abstract
model of how people think about things within the healthcare domain. Since the
healthcare domain is so large, there are many ontologies available, each covering one or
more parts of the domain.

- Coding: In healthcare, coding of e.g. medical diagnosis, disease, and medication is a way
to create a classification. There are a large number of classification systems, some
overlapping. Thus, an architect working in the healthcare domain must chose between
classifications according to context and business.

1 Gruber, T. “A translation approach to portable ontologies”. Knowledge 7.

 Page 22 of 87

D1.1 Overall Architecture

5.3.1.1 How to use dictionaries in MPOWER

It is necessary to use a dictionary when integrating information from semantically
heterogeneous sources. The original information sources must be related to the dictionary
according to certain rules or translations in order to provide a common information model for
the integrated system. The mapping or translation can be done using standard patterns for
information integration.

5.3.2 Standards
A standard is a formalised model or example developed by a standardisation organisation or
established by general consent. Using standards help achieving interoperability with other
systems following the same standard, thus simplifying a future integration of information
from these systems.

There are many types of standards to be followed when developing distributed information
systems. Some standards are international while others are only valid on a national level, e.g.
legislations regarding documentation of work done by healthcare providers. For this reason,
this document will point to international, European and Norwegian standards and
standardising institutions.

Standards relevant for the MPOWER Platform are identified and described in [3-5]

5.3.2.1 Legislations and regulations

These are standards that must be followed – either by implementing the system according to
the standards, or by avoiding it by redefining the system’s capabilities or extent. The national
legislative assembly gives legislations and regulations. Often, a dedicated institution is
empowered to make sure that these are followed.

5.3.2.2 Information representation standards and models

There is a large work going on trying to standardise the information models within the
healthcare domain. The work is complex and coordination across country and culture borders
is difficult. The MPOWER system solution seeks to simplify the selection and use of these
standards by providing a guidelines and tools that incorporates concepts from the standards.
The architect and developers will only need to consider which standard to use in the system,
and select the appropriate tooling support from the MPOWER system solution. Below is a list
of international standards that are relevant for MPOWER architectures.

International information standards:

- CEN TC251. European Standardization of Health Informatics - Standardization in the
field of Health Information and Communications Technology (ICT) to achieve
compatibility and interoperability between independent systems and to enable modularity.
This includes requirements on health information structure to support clinical and
administrative procedures, technical methods to support interoperable systems as well as
requirements regarding safety, security and quality: http://www.centc251.org

- Health Level 7 (HL7). Health Level Seven is one of several ANSI-accredited Standards
Developing Organizations (SDOs) operating in the healthcare arena. Most SDOs produce
standards (sometimes called specifications or protocols) for a particular healthcare
domain such as pharmacy, medical devices, imaging or insurance (claims processing)
transactions. Health Level Seven’s domain is clinical and administrative data:
http://www.hl7.org

 Page 23 of 87

http://www.centc251.org/
http://www.hl7.org/

D1.1 Overall Architecture

- OpenEHR. The openEHR Foundation is a non-profit organisation bringing together an
international community of people working towards the realisation of clinically
comprehensive, ethico-legally sound and interoperable electronic health records to
support seamless and high quality patient care: http://www.openehr.org

5.3.2.3 Messages exchange standard

The environment of medical electronic data interchange (EDI) is extremely heterogeneous
and complex, and it is changing continuously. Bemmel and Musen have created a list of
different types of messages exchanged in healthcare:

Clinical messages

- Exchange of service requests to and reports from laboratories, radiology departments, and
ancillary services

- Prescriptions from physicians to pharmacies

- Hospital admission data and discharge summaries

- Multimedia patient-centred electronic health care records

- Transplantation data, such as registrations, waiting lists, and organ matching

- Data from pharmaceutical industry, e.g., information on drugs, drug surveillance, and
pharmaceutical trials

- Interpersonal mail between practitioners, e.g., between general practitioners and
specialists

- Information retrieval from external literature and knowledge bases

- Communication with public authorities in connection with epidemiology, quality
assessment schemes, or utilization review

Logistics and financial messages

- Communication between hospitals and suppliers; purchasing, invoicing, and logistics

- Exchange with insurance agencies and third-party payers; billing and reimbursement

Medical images, biosignals, and multimedia data

- Multimedia patient record

- Conventional X-ray images from radiology departments

- Digital images from computed tomography scanners, magnetic resonance imagers, and
ultrasound equipment

- Images processed for radiotherapy and neurosurgery

- Scanned documents (e.g., for the electronic multimedia patient record)

- Digital voice reports

- Biosignals (electrocardiograms, electromyograms, electroencephalograms, etc.)

Table 1: Different types of messages exchanged in healthcare

 Page 24 of 87

http://www.openehr.org/

D1.1 Overall Architecture

6 MPOWER Architecture and Platform
This chapter presents the reference architecture user for MPOWER-based systems. A
reference architecture is defined as:

“A high-level, generic architecture which is uses as the basis for development of concrete
system architectures, and to compare architectures of existing systems to each
other.”[MPOWER Glossary]

The main purpose of using a common reference architecture in MPOWER is to aid the
developers (application and middleware) in the definition of services; use the same
abstraction level and concepts for interaction.

6.1 MPOWER Reference Architecture
The MPOWER project uses IBM Service Oriented Architecture (SOA) as reference
architecture [6]. The next chapters briefly describe the main element of IBM SOA reference
architecture and the relationships between them.

It starts with a conceptual model that describes the main interaction between three SOA
primary parties and then continues with description of IBM architectural styles and principals.

6.1.1 Conceptual Service Model
The main parties that are involved in service-oriented architecture are (Figure 5):

• Service Provider: provides the description and implementation of a service

• Service Consumer: can either use the uniform resource identifier (URI) for the
service description directly or can find the service description in a service registry and
bind and invoke the service

• Service Broker: provides and maintains the service registry. The next diagram shows
the main interaction between the above mentioned parties

uc SOA parties

Serv ice Prov ider Serv ice Consumer

Serv ice Broker

Serv ice Description userealize

described incontains

Figure 5 SOA Conceptual Model

 Page 25 of 87

D1.1 Overall Architecture

6.1.2 Architectural styles and principles
The goal of using SOA is to liberate the business from the constraints of technology without
throwing the already existing things out. The main advantage of SOA is reusability. User and
business needs are constantly changing and requests for new programs just keep coming. An a
SOA approach, applications are build using a set of building blocks know as components
(some of them are available “off the shelf” and some are build from scratch), so when you
need to add new or update existing logic of some application it is not such a big deal with
SOA. You only need to change the business logic and the plumbing can stay the same
because these two parts are well separated.

IBM defines SOA architectural style as: “A set of patterns and guidelines for creating loosely
coupled, business-aligned services that, because of the separation of concerns between
description, implementation, and binding, provide unprecedented flexibility in responsiveness
to new business threats and opportunities.” [6]

6.2 MPOWER SOA Architecture

6.2.1 Conceptual Service Architecture
The SOA4HL7 architecture document specifies three different SOA topologies: minimum
SOA, Mediated SOA and Dynamic SOA [7]. The conceptual SOA topology to be used for
MPOWER based systems is the Dynamic SOA as defined in the SOA4HL7 document, which
involves dynamic use of a number of supporting platform services/components. These
services, such as service management, policy management and orchestration manager comes
as an integral part the chosen application server. The recommended servers for use with
MPOWER are described in section 9.1.

Figure 6 describes the conceptual service architecture as described in the SOA4HL7
architecture document. With reference to Figure 6, two main groups of components are
described: the core components and a set of supporting components. The core components are
mandatory, whereas the supporting components are optional. However, many of the
supporting components should be provided to have a complete SOA system. The mandatory
components are: Services Registry, Service Consumer, Service Provider, Adapters and
Routing and Transformation Intermediary. Details about the optional components can be
found in [7] and [1].

 Page 26 of 87

D1.1 Overall Architecture

cmp HL7

Adapter Adapter

Services Registry

Routing
Intermediary

Transformation
Intermediary

Service
Cons umber

Endpoint
Application

Service Provider
Endpoint
Application

Securi ty Manager
/ Service

Policy Manager /
Service

Subscription
Manager / Service

Orchestration
Manager / Service

Transaction Manager
/ Service

Logging / Audit
Service

Mes sage
Persis tence Store

/ Service

Look up Publ ish

«HL7 Content»

Figure 6: Dynamic SOA as described in SOA4HL7 Architecture document [7]

6.2.2 SOA Reference Architecture
The MPOWER SOA reference architecture is based on IBM’s reference architecture for
Service-Oriented Architecture[6]. The reference architecture consists of five layers – each
layer comprising a set of “component” that conforms to the rules and requirements specified
for the layer. Furthermore, the layers are grouped into three groups: application, domain and
system specific group. This grouping is done to clearly separate the components that are
specific for the applications (such as the Proof-of-Concept applications being developed in
MPOWER), for the domain (smart house and homecare is the target domain for MPOWER
services), and underlying systems (national health networks, vendor-specific databases and
sensor systems). The groups and layers are described in the following.

6.2.2.1 Application Specific Components

Application specific components are considered to be designed for a specific type of use in an
identified organization. Reusability across organizations/applications is not the primary
concern when designing these components.

The Application Layer is usually out of scope for discussions on SOA, but it is useful to
include it in the reference architecture to demonstrate which layers that will be included in a
complete SOA system. The application layer need to provide a user interface that uses the
underlying (business) services. It is important to note that SOA decouples the user interface
from the components. The application layer will normally include components that are
specific for the system (solution) being developed.

The Business Process Layer includes compositions and choreographies of services exposed
by the Service Layer. The Services are bundled into a flow through orchestration or
choreography, and thus act together as a single application. These applications support
specific use cases and business processes, and are to a certain degree application specific even
though standardization on business processes is under development in many countries and
medical specialities. An example of a homecare business process is management of a shared
calendar where calendar, user (patient and caregiver) information, and medical plans are
accessed through a set of services and service components.

 Page 27 of 87

D1.1 Overall Architecture

6.2.2.2 Domain Specific Components

The domain specific components are specific for the operational domain, e.g, smarthouse
solution and homecare systems. The services are designed according to best practice SOA
principles with focus on reusability and loose coupling.

The Services layer includes the services the business chooses to fund and expose reside in
this layer. They can be discovered or be statically bound and then invoked, or possibly,
choreographed into a composite (business) service. The underlying service components
provide service realization using the functionality provided by their interfaces. The interfaces
get exported out as service descriptions in this layer, where they are exposed for use.

6.2.2.3 System Specific Components

System specific components are independent of both application and domain and can be
reused by many applications in different domains. However, they are strongly coupled with
the underlying system, being a software component or a hardware interface. Typical examples
are sensor interfaces and database connections. Communication devices are relevant in
distributed systems.

The Service components expose the functionality of the components and services in the
resource layer. The Service components provide a high-level access to their information and
control functions. A typical service component in MPOWER is a smarthouse-sensor driver
that encapsulates and implements the sensor communication logic for the higher-layer
services.

The Resource Layer consists of existing custom built applications, such as databases storing
e.g., patient-administrative information, medication information, management information
such as calendar events. Other relevant resources in MPOWER are information from (smart)
sensors such as physiological monitoring devices, temperature sensors, burglar alarms and
water-flow systems.

In Figure 7, the MPOWER reference architecture is shown in a UML Package diagram. Two
categories of applications have been defined in the application layer: Homecare and
Smarthouse. The architecture is not restricted to these types of applications, but the service-
categories specified in the Service Layer are targeted towards these types (see chapter 7. for
more details on service categories)

 Page 28 of 87

D1.1 Overall Architecture

cmp SOA

Application Specific

Domain Specific

System Specific

Application Layer

+ Control Center Application
+ HomeCare Application
+ Smarthouse Application

Business Serv ice Layer

+ Calendar Management Processes
+ Context Aware Notification
+ Individual Plan Processes
+ Physiological Monitoring
+ Sensor Rules

Serv ice Layer

+ Communication Services
+ Information Services
+ Management Services
+ Security Services
+ Sensor Services

Serv ice Components

+ Information System Wrappers and Adapters
+ Sensor Drivers

Resource Serv ices

+ Communication System
+ Education Systems
+ Healthcare Information Systems
+ Knowledge Databases
+ Sensors

Figure 7: The MPOWER SOA Reference Architecture

The services in the Service Layer can be distributed and reused in a network, and accessed
through standard interfaces over standard protocols.

6.3 MPOWER Information Models
The MPOWER information middleware is divided into three different components:

• Medical Information Model

• Social Information Model

 Page 29 of 87

D1.1 Overall Architecture

• Context Information Model.

These models provide information about patient medical condition (medical information
model), the patient’s social network and social activities (social information model) and the
current situation (context information models).

The services that use these information models should provide advanced homecare for the
patient. The medical and social information models extend HL7v3 information models to
support the needs of patient and professional caregivers. HL7 will be used as a basis to further
develop models in the area of advanced homecare.

Information models outside the medical area that include information that is important for the
social life of cognitive disabled and elderly people will also be developed and aligned with
the ongoing work within the HL7 organization. The context information model will be
developed in order to provide adoption of GUI dependent of the user needs based on the
following parameters: application state, user type, location, terminal and mode of operation.

The overall process of defining information models that are relevant for implementing
advanced homecare services is presented in MPOWER D3.1. It is worth mentioning that this
process uses a “top-down” approach which means that it starts from detailed business
requirements and process definitions and refines them in a stepwise fashion down to a
software implementation. Business process models provide a blueprint for the identification
of services.

6.3.1 Process of defining information models

Figure 8 Process of defining information models

The overall process consists of few steps :

1. Start with user needs and try to think of the business goals you want to achieve (e.g.
You want to provide subject-of-care with individual plan application)

 Page 30 of 87

D1.1 Overall Architecture

2. Try to identify the services that will be choreographed in a new business process to
fulfil the business goal (e.g. Subject-of-care needs medication list, calendar with all
medication and non-medication activities, information’s about his diagnose, level of
dementia and overall medical condition)

3. Try to map these services to existing HL7 domains and topics (e.g. Scheduling
Domain Appointment Topic)

4. Start to identify the message content. At the business level this should be an
information level in e.g. UML. This UML model is Platform Independent Model
(PIM). At the Platform Specific Model (PSM)/Implementation level an XML Schema
should be produced.

 Using HL7 artefact following procedures should be taken out as part of this phase:
• If there is a matching CIM/R-MIM for the scope of the operation then this

should be used. Otherwise you should start with DIM and identify
appropriate classes in the scope.

• Look for relevant reusable information structures (CMETs)
• Data Types and Vocabulary should be based on existing V3 artefacts where

they exist

 Page 31 of 87

D1.1 Overall Architecture

7 MPOWER Middleware Services
The MPOWER middleware consists of a set of services and components that can be used by
the application developers to rapidly design and implement an application. To enable reuse,
the reusable services and components are provided in two different formats: as a UML Model
or as a compiled component (with source code) ready to be deployed (see section 8.1 for
details.)

The services provided as a part of the MPOWER Middleware are grouped into five categories
as described below and illustrated in Figure 9: Management Services, Information Services,
Sensor Services, Security Services and Communication Services. Details about each package
of services are described in the following, and a general discussion on the usefulness of
reusable service definitions is given in Appendix D.

class MPOWER Serv ices

Communication Serv ices

+ Alarming
+ CalendarSynchronizer
+ ExternalNotification
+ JournalNoteService
+ MedicationPlanSynchronizer
+ SIPCallClient
+ SIPCallManagement
+ SIPCallService
+ SIPConfigClient
+ SIPConfigService
+ SIPManagement
+ SIPStateClient
+ SIPStateManagement
+ SIPStateService

Management Serv ices

+ PatientManagement
+ PersonManagement
+ ProviderManagement

Security Serv ices

+ Status
+ Encryption
+ User Management
+ Role Management
+ Token Management
+ Access Management
+ Audit
+ AccessControl
+ Public Key Infrastructure
+ Secure Communication
+ Secure Storage

Information Serv ices

+ Calendar
+ Medication

Sensor Serv ices

+ CameraManagement
+ Device Management
+ DoorManagement
+ FSA
+ Location
+ OvenManagement
+ TemperatureControl

Figure 9: MPOWER Service Categories

7.1 Communication Services - (Logical diagram)

Service Package Communication
Description The communication services package has services that communication

information of different types. The package contains seven core services, in which
the SIP communication service has several associated services.
• Alarming service provides functionality for managing alarms (trigger, stop,

log, etc). it can be used by other services or applications
• The Journal Note service enables transfer of local journal notes to an external

system through a standardized interface.
• External Notification provides operations for sending notifications in form o

email, sms or messages to a specified recipient.
• The Calendar Synchronizer service provides functionality for synchronizing

two or more calendars.
• The Medication Plan Synchronizer service provides functionality for

synchronizing two or more medication plans.

 Page 32 of 87

D1.1 Overall Architecture

• The SIP services provide functionality for managing and initiating SIP calls
between clients.

class Communication Serv ices

Alarming

+ Alarming
+ AlarmingInterface
+ Database
+ InformationModel
+ Rationale

JournalNoteServ ice

+ JournalNote
+ TransferToProfessionalSystem
+ InformationModel
+ JournalNote Management
+ Rationale
+ TransferSystemMessage Management

ExternalNotification

+ ExternalNotification
+ ExternalNotificationInterface
+ InformationModel
+ Rationale

CalendarSynchronizer

+ CalendarSynchronizer
+ iCalendarSynchronizer
+ InformationModel

MedicationPlanSynchronizer

+ MedicationPlanSynchronizer
+ iMedicationPlanSynchronizer
+ InformationModel

SIPCallClient

+ SIPCallClient
+ iSIPCallClient
+ InformationModel

SIPCallManagement

+ SIPCallManagement
+ iSIPCallManagement
+ InformationModel

SIPCallServ ice

+ SIPCallService
+ iSIPCallService
+ InformationModel

SIPConfigClient

+ SIPConfigClient
+ iIPConfigClient
+ InformationModel

SIPConfigServ ice

+ SIPConfigService
+ iSIPConfigService
+ InformationModel

SIPManagement

+ SIPManagement
+ iSIPManagement
+ InformationModel
+ Types

SIPStateClient

+ SIPStateClient
+ iSIPStateClient
+ InformationModel

SIPStateManagement

+ SIPStateManagement
+ iSIPStateManagement
+ InformationModel

SIPStateServ ice

+ SIPStateService
+ iSIPStateService
+ InformationModel

Figure 10: Detailed view of the communication services

7.2 Information Services - (Logical diagram)

Service Package Information Services
Description The information service package contains two main services. The services are:

• Calendar Service allows for adding, querying, setting reminders and viewing
calendar information

• Medication Service allows for adding, querying, editing and viewing
medication information for a patient

Both services use HL7v3 messaging for input/output.

class Information Serv ices

Calendar

+ CalendarManagement
+ CalendarManagement
+ InformationModel
+ Rationale

Medication

+ MedicationManagement
+ MedicationPlanSynchronizer
+ InformationModel
+ MedicationManagement
+ Rationale

Figure 11 Detailed view of the information services

 Page 33 of 87

D1.1 Overall Architecture

7.3 Management Services - (Logical diagram)

Service Package Management
Description The management service package contains services that manage the core

stakeholders in a smart homecare system.
• Patient Management provides functionality for adding, updating, querying

and viewing patient information (demographics, relationships etc)
• Person Management provides functionality for maintaining person

information in the system database (add, edit, view, delete)
• Provider Management provides functionality for managing providers

class Management Serv ices

Prov iderManagement

+ ProviderActorControl
+ iProviderManagement
+ Informationmodel
+ Interface
+ Rationale

PersonManagement

+ PersonActorControl
+ iPersonManagement
+ InformationModel
+ Rationale

PatientManagement

+ ErrorCodes
+ PatientActorControl
+ iPatientManagement
+ Informationmodel
+ Rationale
+ Types

Figure 12 Detailed view of the management services

7.4 Security Services - (Logical diagram)

Service Package Security
Description The Security services package contains service that provides the well-known

security mechanisms for authentication, access control and encryption. In
addition, is has services for user management and auditing. The services are:
• User Management service enables the Administrator to manage the users of

the system. The Administrator may add or delete users, update the user’s
role and get information about users

• Token Management service is used by the Authentication and Authorization
services to manage the login sessions, including issuing and controlling the
validity of security tokens.

• Audit service provides an interface enabling other services to store data that
needs to be logged for future audit purposes. Additionally, it provides
operations to retrieve logged data that is necessary for auditing.

• Access management service manages the permissions and access profiles
associated with the access control system.

• Access Control includes the Authentication and Authorization services. The
Authentication service verifies a user’s credentials and allows access to the
system only to users with valid credentials. The Authorization service
determines what operations and which data an authenticated user can access,
allowing access to resources only to legitimate, authorized users.

• PKI service provides the interface for general management of certificates, i.e.
issue, renew and revoke, and for verification of the validity of a certificate.

• Role Management service enables the Administrator to manage the roles of
the system. The Administrator may add or delete roles , assign users to
roles, get information about roles, and view user’s assigned to a role

• Encryption mechanism describes functionality related to confidentiality and
integrity protection of data.

• Secure Storage mechanism describes functionality for storing data securely

 Page 34 of 87

D1.1 Overall Architecture

and for retrieving secured data from storage.
• Secure Communication is the mechanism describing functionality needed to

secure data being transmitted between two endpoints.

class Security Components

Mechanisms

Services

AccessControl

+ Authentication
+ Authorization
+ AccessControl Information Model
+ AccessControlInterface
+ Rationale

User Management

+ UserManagement
+ UserManagement
+ UserManagement InformationModel

Role Management

+ RoleManagement
+ RoleManagement
+ RoleManagement InformationModel

Access Management

+ AccessManagement
+ AccessManagement
+ AccessManagement InformationModel
+ Rationale

Audit

+ Auditing
+ Auditing
+ Audit Information Model

Public Key Infrastructure

+ Certificate
+ CertificateManagement
+ PKI
+ PKI InformationModel
+ Rationale

Secure Communication

+ SecureCommunication
+ SecureCommunicationManagement
+ Authentication Module (Access Control)
+ Client
+ PKI module
+ Server
+ iSecureCommunication
+ Test
+ SecureCommunication Information Model

Secure Storage

+ SecureStorage
+ SecureStorageManagement
+ Secure Storage Client
+ Security Module
+ Storage
+ iSecureStorage
+ SecureStorage Information Model

Encryption

+ ServiceEncryption
+ Encryption

Token Management

+ TokenManagement
+ TokenManagement
+ TokenManagement Information Model

«use»

«use»
«use»

«use»
«use»

«use»

«use»

«use»

«use»

Figure 13 Detailed view of the security services

7.5 Sensor Services - (Logical diagram)

Service Package Sensor
Description The sensor service package contains services the interface and manage sensors.

The services expose both management mechanism and data access through an
easy to use and standardized interface. The services are:

• Device Management - this service provides necessary functionality to
manage devices to be installed in the MPOWER environment. Possible
operations are: adding new device information, removing a device or
configuring an installed device.

• Temperature Control - a service providing a functionality of getting the
measured values by the temperature sensors.

• Location - service through which the patient’s location can be controlled
at all time.

• Door Management - a service providing a functionality of getting the
information from door magnetic contacts sensors.

• Camera Management - is a service through which an authorized access to
MPOWER environment cameras is possible, with security features
applied.

• FSA - is a component that serves to interoperate with different kind of
sensors/devices in a unified way. It composes of layers where a data is

 Page 35 of 87

D1.1 Overall Architecture

obtained from a sensor, translated to an understandable format and
provided to the environment through web services.

• Oven Management - controls an oven sensor which is controlled by the
FSA component

class Sensor Serv ices

Dev ice Management

+ DeviceManagement
+ DoorControlManager
+ FlowMonitoring
+ DeviceOperation
+ DoorAccesManagement
+ DoorAlarmManagement
+ DoorBehaviorManagemet
+ DoorOpen
+ FlowAlarmManagement
+ Information Model
+ Rational

Location

+ LocationQuery
+ LocationUpdate
+ LocationNotification
+ LocationOperation
+ LocationQuery
+ LocationUpdate
+ InformationModel
+ Location

TemperatureControl

+ Alarm
+ Behaviour
+ Identifier
+ IDNetwork
+ Manufacturer
+ Network
+ Relationship
+ TemperatureControl
+ TemperatureControl
+ iTemperatureSensorCfg
+ iTemperatureSensorMgmt
+ iTemperatureSensorNotification
+ iTemperatureSensorQuery
+ TemperatureSensor
+ InformationModel
+ Rationale
+ TemperatureControl

DoorManagement

+ :DoorControl
+ doorControl
+ iDoorNotification
+ iDoorOperations
+ iDoorQuery
+ Information_Model
+ Rational

OvenManagement

+ OvenControl
+ OvenNotification
+ OvenOperations
+ OvenQuery
+ OvenUpdate
+ Information Model
+ rational

CameraManagement

+ CameraAcces
+ Acces
+ FSA_OBIX
+ Information Model
+ Rational

FSA

+ FSA
+ FSA_OBIX
+ Information Model
+ Rational

Figure 14 Detailed view of the sensor services

 Page 36 of 87

D1.1 Overall Architecture

8 MPOWER Methodology
To address the information system interoperability problems, new techniques and
methodologies have been introduced in the Software Engineering community. One of these is
the Model Driven Development, or more precisely Model Driven Software Development
(MDSD). The goals of MDSD described in [8] can be summarized as follows:

• Increase development speed and software quality through automation
• Higher level of reusability as the architectures, modelling languages and transformations

are generic for the domain (abstract)
• Improved manageability of complexity through abstraction
• MDSD is based on the Object Management Group’s Model Driven Architecture ®

(MDA). OMG’s focus in on interoperability, portability and reusability through
architectural separation of concerns [9]

8.1 Model-Driven Software Development
In 2002, the Object Management Group (OMG) introduced the Model-Driven Architecture
(MDA)[10], an approach focusing on using models (e.g., UML models[11]) as first-class
entities in the development of software systems. In practice, this means that the models are
used directly in the implementation of an information system, either as system blueprints or as
input to code generation engines that produce executable code. MDA is the most known
model-driven software development (MDSD) approach, and the overall idea is to separate
business functions (in Platform Independent Models - PIM) from its technological
implementations (in Platform Specific Models – PSM), enabling code generation and reuse of
components. The overall benefit is improved interoperability and reduced development time
and cost.

The model-driven software development approach (MDSD) [8] has been, and still are, subject
for debate in the software engineering community. Despite passionate criticism, many
organizations have reported significant improvements in the development process and on
software quality [12, 13]. In the healthcare domain, using Model-Driven Architecture[10, 14]
has been presented in several articles [15-20].

Several initiatives are working on solutions where many of the resource consuming
integration tasks are automated, by providing ready to use modules or using a code generation
engine to produce executable code. Service Oriented Architecture (SOA)[1, 2] is currently the
best practice approach to enable applications to expose information and services towards each
other. Kawamoto and Lobach [19] argue that the properties of SOA provide simpler software
design, improves software reusability and save development cost.
To design SOA services, a formal language such as UML should be used to ensure correct
and intentional specifications. A MDA-compliant tool with an UML extension such as the
IBM UML Profile for Software Services [21] provides a formal framework from which
executable SOA services can be generated.

Using an MDSD approach in the development of healthcare information system services
could facilitate the use of standards through specification of reusable standards-based PIMs.
Advanced UML mechanisms such as Profiles and Patterns could be used to further extend the
expressiveness of the modelling language and force the use of standardized healthcare
concepts. As a result, the developed systems will increase the level of interoperability, and at
the same time development and maintenance costs will decrease.

 Page 37 of 87

D1.1 Overall Architecture

MDSD seeks to use models (a formal graphical notation) to represent all artefacts involved in
the development of a software system. Models are both abstract and formal at the same time,
meaning that irrelevant details are abstracted away and the core is described (modelled)
unambiguously. The models are used in diagrams that specifies a static or dynamic
(behaviour) view of the target system. Diagrams are typically created using a top-down
approach where the high-level concepts are identified and documented before they are broken
down into sub-concepts, workflows and information models. The low-level detailed models
can be transformed into new and technology specific models (including concepts from J2EE
or .Net). From the technology specific models, executable code can be generated.

8.1.1 OMG’s Model Driven Architecture (MDA)
The best known MDSD approach is OMG's Model Driven Architecture (MDA)[10, 14].
MDA provides an open, vendor-neutral approach to the challenge of business and technology
change. Based on OMG's established standards, the MDA separates business and application
logic from underlying platform technology. The platform-independent models (PIM) of an
application or integrated system's business functionality and behaviour, built using UML and
the other associated OMG modelling standards, can be realized through MDA on virtually
any platform, open or proprietary, including Web Services, .Net, CORBA, J2EE, and others.
These platform-independent models document the business functionality and behaviour of an
application separate from the technology-specific code that implements it, enabling
interoperability both within and across platform boundaries. No longer tied to each other, the
business and technical aspects of an application or integrated system can each evolve at its
own pace – business logic responding to business need, and technology taking advantage of
new developments – as the business requires[9].

8.1.2 Model Transformation and Code Generation
One of the core features of MDSD (and MDA) is the ability to transform one model of the
system into a new technology specific model which in turn can be used to generate executable
code. The overall concept is to model the system from different viewpoints, each viewpoint
having its own goal and role in the development process. MDSD is in line with MDA that
describes three different viewpoints and their corresponding models, namely the Computation
Independent Model (CIM), Platform2 Independent Model (PIM) and Platform Specific Model
(PSM)[9].
• CIM: The CIM is a model that focuses on the environment of the system, and the

requirements for the system; the details of the structure and processing of the system are
hidden or as yet undetermined.

• PIM: The platform independent viewpoint focuses on the operation of a system while
hiding the details necessary for a particular platform. A platform independent view shows
that part of the complete specification that does not change from one platform to another.

• PSM: The platform specific viewpoint combines the platform independent viewpoint with
an additional focus on the detail of the use of a specific platform by a system.

2 A Platform in MDA is defined as a set of subsystems and technologies that provide a coherent set of
functionality through interfaces and specified usage patterns, which any application supported by that
platform can use without concern for the details of how the functionality provided by the platform is
implemented

 Page 38 of 87

D1.1 Overall Architecture

Figure 15 : The MDA models. Figure based on [22]

8.1.3 Meta-models, UML Profiles and UML Patterns
One way to achieve semantic and syntactical information interoperability is to have a
common meta-model. A meta-model (data about data) describes the semantics of a language,
such as an information standard in healthcare, and must be described formally. In a model-
driven development project one may use several meta-models, but to ensure interoperability
one should have a mapping model between the different meta-models. A meta-model may be
domain specific, e.g. a meta-model for continuity of care, providing a familiar language to the
people modelling information systems for this domain.

OMG has specified the Unified Modeling Language (UML) [11], a formal modelling
language that can be used to specify (model) both static and behavioural aspects of a system.
Using the Object Constraint Language (OCL)[23, 24] together with UML enables the
modeller to enrich the models with enough detail to render it possible to generate high-quality
source code. Another mechanism offered by UML is the use of UML Profiles. A profile is
used to add domain specific concepts and terms to the modelling language. Stereotypes,
tagged values that can be applied to elements, attributes, associations etc, enable accurate
modelling for a specific domain.

A Design Pattern as described by Gamma et al [25] is a powerful mechanism for specifying
reusable and well-proven concepts. UML can be used to describe a pattern formally, and most
UML modelling tools support the use of UML Patterns in system modelling.

 Page 39 of 87

D1.1 Overall Architecture

8.2 SOA, MDSD and HealthCare - a way to improve the systems’
compliance to standards

8.2.1 Conceptual Model
The core of MDSD is to use formal models (e.g. UML models) to express structure of
behaviour of a software system and then use the models as basis for code generation. The
models must include enough information (richness) to the transformation process so that as
much of the software system code as possible can be generated. To aid the software modeller
in adding information, UML Profiles can be used. A UML Profile includes stereotypes,
tagged values and constraints that can be assigned to a UML modelling element during
design. The transformation engine will use this information to generate (more) complete code.

The process of creating a standards-based Healthcare Application based on MDSD and
reusable services can be summarized in three steps:

1) Create UML Profile and Model Transformation from Healthcare Standard
2) Create reusable Healthcare Middleware Service applying UML Healthcare Profile
3) Create Healthcare Application using UML Healthcare Profile and reusing Healthcare

Middleware Service(s)

Create UML Profiel
and Model

Transformation from
Healthcare Standard

Create Healthcare
Application using UML

profile, Model
transformation and

Middelware Services

Create Middleware
using Healthcare UML

Profile and Model
Transformation

UML Profile and
Model Tranformation

UML Profile and
 Model Transformation

Resuable Middleware
Services

Figure 16: High-level conceptual process model

8.2.2 Create UML Profile and Model Transformation from Healthcare
Standard

A UML Profile provides domain specific information that can be used during system design
and modelling. The profile can hold UML extensions in the form of stereotypes, tagged
values and constraints. Using a Healthcare Information Standard such as CONTSYS[26],
stereotypes such as “HealthcareProfessional” and “SubjectOfCare” can be specified. Tagged
values can be a Boolean value for “isOrganDonor” and “BloodType”. An example of a
constraint can be that a “SubjectOfCare” must have a “BloodType”.

A Model Transformation is a “script” that uses the UML models as input to produce another
more specific model or text (code). The Healthcare Model transformation described here will
use the extensions specified in the UML Profile as input to the transformation process. E.g., a
UML Class extension called “SubjectOfCare” can make the transformation engine produce a
class that has operations for setting and getting the “BloodType” (TaggedValue).

The figure below shows the steps involved.

 Page 40 of 87

D1.1 Overall Architecture

Healthcare
information
standard

Add stereotypes,
tagged values
and contraints

Create UML
Profile

UML Profile for
HealthCare
Standard

Make available as

Create Model
Transformation

Specify creation of operations,
 attributes and supporting classes

 for elements in UML profile

Model
Transformation
for Healthcare

Standard

Make available as

Use

Figure 17: Creating a UML Healthcare profile and Model transformation to support a
Healthcare Information Standard

8.2.3 Create Healthcare Middleware Service using UML Healthcare Profile
Using the Healthcare UML Profile and Model Transformation, healthcare specific
middleware services can be created.

 Page 41 of 87

D1.1 Overall Architecture

UML Profile
for

HealthCare
Standard

Reusable
Healthcare
Middleware

Service

Service
Design

and
modelling

Middleware
Service

Specification

Use

Service Requirements

Compile

Platform
Independent
HealthCare

Service Model

UML model

Model
Transformation
for Healtcare

Standard

Transform
Model to

Code
use

Use standard model to text transformation

Using information from

Complete
code

Code
complete?

Compile

no

yes

yes

Figure 18: Creating reusable Healthcare Middleware Services using Healthcare UML Profile and
Model Transformations

 Page 42 of 87

D1.1 Overall Architecture

Figure 19: Creating a Healthcare Application using Healthcare UML Profile, and Model
Transformation and reusing Middleware Service(s)

8.3 MDA Tool Support for Specifying Services in MPOWER
The development of the MPOWER middleware platform follows the model-driven approach
as defined by the Model Driven Architecture from OMG [10]. To document the domain
business activities, the user needs, user scenarios, formal usecases, and system features
relevant for MPOWER are modelled in UML. Understanding of user needs and user
involvement is central to the MPOWER approach. This knowledge must be used in the
development process. The model-driven development approach seeks to represent all artefacts
involved in the development process as model elements; hence activity scenarios for the user
needs should be modelled in UML as UseCases and activity diagrams.

The services are modelled in UML as class diagrams, and using stereotypes from the UML
profile for System Services [21]. Mikalsen et al demonstrates the use of this profile for
interoperable healthcare services in [27]. The MPOWER services are modelled following the
design principles by Erl [1] and SOA4HL7 [7]:

 Page 43 of 87

D1.1 Overall Architecture

• Identify a service: As stated in SOA4HL7 document, it is very difficult to provide a
precise answer to the question “What makes a good service?” However, the interfaces
and operations included should all be closely related in a business sense and part of
the same overall function with similar purpose and be fairly complete for that
function.

• Identify interfaces: Service definitions can include one or more interfaces. In general,
different interaction styles can be split into different interfaces e.g. Query (read-only)
vs Update vs Notification (subscription based).

• Identify operations: The operation is the actual “unit of functionality” that needs to be
carried out. One interface can contain many operations.

• Identify message content: Each operation produces and consumes specific message
content. For the operations at the PIM level this can be represented as UML model.
At the implementation level, assuming a web service solution, an XML Schema
should be produced.

8.3.1 Information Modelling – HL7 standard messages
One of the key features of the MPOWER middleware services is to make it easier for system
developers to adhere to international healthcare information standards. HL7 version 3
messages are the primary standard to use for message content in MPOWER, the last phase of
the service specification methodology. HL7 Version 3 standard use a well-defined
methodology based on a Reference Information Model (RIM) [28]. The RIM represents the
essential part of the HL7v3 development methodology, as it provides an explicit
representation of the semantic and lexical connections that exist between the information
contained in HL7 messages. The methodology for using HL7 in SOA development is
described in [7].

As specified in the MDA Guideline document [10], the PIMs are transformed into models that
incorporate implementation details specific for a certain technology, to form the Platform
Specific Models. The target platform of the MPOWER SOA services were decided to be Web
Services [29] developed in Java EE 5 [30]. The main PSM artefact in web service
specification is the description of the web service in a WSDL file[31]. A WSDL file contains
details about the data types, messages used, operations provided, protocols used, and the
location of services(s). From a WSDL file, much of the needed implementation code can be
generated using appropriate tools.

8.3.2 Modelling: Computation Independent Models - User needs
The process of capturing the user needs and business aspects (the CIM) resulted in 18
problem and activity scenarios, each with two to four activities (See deliverable MOWER
D7.1 for details). Each scenario is described by one or more UML use cases and grouped into
10 logical packages. Each use case is related to a set of actors and contains a reference to the
scenarios from which it is derived. Figure 20 shows the “Stakeholder management” use case
and how it is related to actors and other use cases.

 Page 44 of 87

D1.1 Overall Architecture

uc Management

HealthCareProfessional

(from Stakeholder - HealthcareProfessional)

Indiv idual Plan

(from System - Health Information System)

Stakeholder
management

Configure homecare
system

HealthCare Organization

(from Stakeholder - Organization)

Figure 20: Use Cases for Management scenarios.
The traceability from use case to the scenarios is shown in Figure 21.

Figure 21: Use Case "Stakeholder management" and the related scenarios

From the MPOWER use cases and scenarios a total of 168 features are described and
grouped into 14 categories. Each feature is directly related to one or more use cases as shown
in Figure 22 where the Stakeholder management use case is related to four features.

custom Stakeholder management

add stakeholder
(stakeholder may
have user rights
to the system)

define relations
between
stakeholders

edit stakeholder
(including role)

enable/disable
stakeholder

(from Individual Plan)

Add plan element

(from Management)

Stakeholder
management

«trace» «trace»

«trace»«trace»

«trace»«trace»

«trace»«trace»

 Page 45 of 87

D1.1 Overall Architecture

Figure 22: Features derived from Stakeholder management and Add plan element use cases

8.3.3 Modelling: Platform Independent Models - Service Specification
As presented in section 7, five packages of MPOWER middleware services are specified from
the features: management, communication, sensor, security and information services. The
rationale for the services is explicitly described as UML implement dependencies as shown in
Figure 23.

class Rationale

add stakeholder
(stakeholder may
have user rights
to the system)

(from Stakeholder management)

define relations
between
stakeholders

(from Stakeholder management)

edit stakeholder
(including role)

(from Stakeholder management)

enable/disable
stakeholder

(from Stakeholder management)«ServiceProvider»
ActorManagement::

ActorControl

Figure 23: Service rationale. The MedicationManagment service implements five features

Each service package contains a number of atomic services that are specified using UML with
the IBM SOA UML Profile [21]. Figure 24 shows the ActorManagement ServiceProvider
(UML Class) from the Management Services package providing one service (UML Port) with
one service specification (the UML Interface iActorManagement). The operations on the
interface reflects the features that the service implements.

class ActorManagement

«ServiceProvider»
ActorControl

ActorManagement

«ServiceSpecification»
ActorManagementInterface::iActorManagement

+ addActor(HumanResourceEventCreate) : boolean
+ disableActor(SuspendHumanResource) : boolean
+ enableActor(ActivateHumanResource) : boolean
+ getActor(Message) : HL7Actor
+ removeActor(TerminateHumanResource) : boolean

Figure 24: The Service Model with UML Stereotypes
The messages used in the operations on the interface are specified according to HL7. Existing
messages provided from HL7 are used when appropriate whereas new messages are
developed using the tools provided by HL7. For the ActorManagment Service used as
example, all messages involved are specified in the HL7 Personnel Management domain
models3. The HL7 message definitions are available for download as XML Schema files.

8.3.4 Modelling: Platform Specific Models - WSDL Models and Code
The MPOWER middleware services are specified to be implemented as web services. Web
services are described using the Web Service Description Language (WSDL) and the services
modelled as PIMs are automatically transformed into WSDL models using a transformation
script. In the context of MDA, the WSDL model is regarded as PSM. The WSDL model is
used to generate WSDL code.

3 HL7 Personel Management domain: http://www.hl7.org/v3ballot/html/domains/uvpm/uvpm.htm

 Page 46 of 87

http://www.hl7.org/v3ballot/html/domains/uvpm/uvpm.htm

D1.1 Overall Architecture

8.3.5 The MPOWER Tool Chain
A tool chain to be used in MPOWER must support development of web services following
the method described in the pervious. In addition, the toolchain must provide functionality for
implementation, deployment and testing.

The MPOWER Toolchain functionality is presented by applying the toolchain in a MDA
process for developing homecare services. The CIM shows how knowledge is incorporated in
the domain analysis phase and used for PIM specification and PSM generation. The models
are presented with examples from the “ActorManagement” functionality. The MPOWER
toolchain is described in the last part of this section.

To support the model-driven software development process described in the previous, three
main process activities must be supported:
• UML Modelling, model transformation and code generation: Enterprise Architect (EA)

from Sparx Systems was chosen as the primary UML modelling tool. EA supports the
latest version of UML and XMI [32] that allows for sharing of models between tools. EA
also provides an easy to use model transformation and code generation engine that is
customisable. The core UML model in EA can be extended using UML Profiles. EA does
not require a powerful PC and is quite inexpensive compared to tools with similar
functionality

• Information Modelling: The tools recommended by HL7 were used for HL7 message
modelling[28].

• Integrated Development Environment and Application Server: Java EE 5 bundle with
Netbeans 6.0/6.1 and Java Sun Application Server 94 was chosen for web service
implementation, deployment and hosting. For testing web services using SOAP transport,
the SOAPUI NetBeans plugin5 can be used in addition to the built-in Netbeans Web
Service testing feature.

Figure 25 shows the tools, activities and artefacts involved the engineering process. The
MPOWER UML Service model is created in EA based on the User Scenarios and Needs
document. HL7 messages are related to the service model and integrated during WSDL
generation. The WSDL file is imported into NetBeans and a web service is generated along
with a SOAPUI test project. Using the Netbeans IDE a web service is fully implemented and
deployed to the Sun Java Application Server. The SOAPUI plug-in for NetBeans provide a
powerful and easy-to-use test mechanism for web services.

4 NetBeans website: http://www.netbeans.org
5 SOAPUI: http://www.soapui.org

 Page 47 of 87

http://www.netbeans.org/
http://www.soapui.org/

D1.1 Overall Architecture

class Toolchain

SUN Application Server 9.0NetBeans 6.x with SOAPUI

Sparx Enterprise Architect

WSDL File

WAR with class files

Model
Service in

UML
MPOWER

UML Service
Model

Generate
WSDL

SOAP
Request and

Response

Generate
Web Service

files

«UMLProfile»
IBM System
Services UML
Profile

Generate
SOAP Test
Messages

«Technique»
Model
Transformation

Test Web
Service

HL7 v3
Messages

User
Scenarios
and Needs

SOAP Request

«flow»

«WorkProduct»

«WorkProduct»

«Document»

«WorkProduct»

«flow»

«flow»

«flow»

«WorkProduct»

«flow»

«flow»

SOAP
Response«flow»

Figure 25: The MPOWER Tool Chain and Artefacts

8.3.6 Tool Chain Example
To demonstrate the toolchain and development process, an example from the MPOWER
middleware development is presented. The example is the ActorManagement service shown
in the previous.

1. Service identification: The service is identified through an analysis of features and
use cases as shown in Figure 20 and Figure 22.

2. Interface identification and operation specification: the features provide important
information about the type of operations to be grouped into an interface. The use
cases with scenario descriptions provide complete behaviour (operation) specification
that is required on the interface (Figure 23, 25 and 26)

3. Message Content identification: The Personnel Management domain message types
were appropriate for use on the ActorManagement interface. XML Schemas for the
message types are available for download from the HL7 website [33].

4. Service Modelling: The service was modelled in UML extended with the IBM UML
Profile for Software Services [21]. The documentation of the UML Profile provides
guidelines for use.

5. WSDL model transformation and WSDL code generation: Enterprise Architect
provides a transformation to WSDL models. The default transformation had to be
customised with additional namespace and protocol information. Figure 26 shows the
WSDL model for the ActorManagement service.

 Page 48 of 87

D1.1 Overall Architecture

6. WSDL import and Web Service creation: Netbeans 6.0/6.1 has a simple interface for
creation of web service from WSDL files. All necessary classes with attributes and
operations are generated.

7. Implementation, deployment and testing: NetBeans offers a standard integrated
development environment (IDE) where the service’s detailed functionality can be
implemented before it can be deployed to the bundled Java Sun Application Server.
SOAPUI is integrated into the NetBeans IDE and enables testing and debugging of
SOAP service interactions.

class ActorManagement

«WSDL»
ActorManagement

ActorManagementInterface

«WSDLbinding»
Bindings::iActorManagement

+ addActor(addActorRequest, addActorResponse*)
+ disableActor(disableActorRequest, disableActorResponse*)
+ enableActor(enableActorRequest, enableActorResponse*)
+ getActor(getActorRequest, getActorResponse*)
+ removeActor(removeActorRequest, removeActorResponse*)

«WSDLportType»
PortTypes::iActorManagement

+ addActor(addActorRequest, addActorResponse*)
+ disableActor(disableActorRequest, disableActorResponse*)
+ enableActor(enableActorRequest, enableActorResponse*)
+ getActor(getActorRequest, getActorResponse*)
+ removeActor(removeActorRequest, removeActorResponse*)

«WSDLservice»
Services::ActorManagementInterface

iActorManagement

Figure 26: WSDL model for ActorManagement Service

8.4 Where MDA should be used in MPOWER
MPOWER will apply an MDA approach in:

1. Definition of the domain: This will result in the Computation Independent Models
(CIM) of the MPOWER (core) middleware. The identified user needs and workflows
will be documented as UML Usecases, with references (for traceability) back to the
originating user scenario.

2. Specification of middleware services: The Platform Independent Models (PIM) of the
MPOWER middleware. Following the guidelines for service modelling in UML
given by IBM [7], all services will be modelled with service names, operations
names, message names and message types.

3. Implementation of middleware services: Both Platform Specific Models (PSM) and
code for the MPOWER middleware. The services modelled in PIM will be
transformed into PSM using an adapted transformation script.

4. Implementation of applications (proof of concept): CIM, PIM, PSM and code for the
application. From the PSM models, code will be generated using code generation
scripts.

The degree to which MDA will be used will vary. However, the following principles exist:

• Models should be the primary artefacts of documentation

• Developers should seek to use MDA mechanisms where appropriate

o Differentiate between PIM and PSM

o Use Model transformation to create PSM from PIM

o Use Code generation from PSM to Code

 Page 49 of 87

D1.1 Overall Architecture

9 MPOWER Application Platform
Figure 27 shows a deployment view of the sensor and calendar system example introduced in
section 3.

At the Smart Home, a table pc running the Sun Application Server is installed. On this SAS
server, a HomeCare application is deployed. This application uses a SensorService that is
provided by the SAS server. The SensorService provides information from the SensorKIT
component. The HomeCare application uses a service in the Healthcare Network Services to
send SMS and emails securely. In addition, it reads updated calendar information from the
Care Center’s CalendarService interface.

In the Care Center, a SAS server hosts the CareControl application. This application uses the
local CalendarService to manage and synchronize patient calendars. In addition, it reads
sensor data from the SensorService in the Smart Home, and sends SMS/email through the
ExternalNotificationService in the Healthcare Network.

deployment Deployment View

Care Center

Healthcare Network Services

Smart Home

«device»
Serv er

«device»
Tablet PC

«device»
SensorKIT

«device»
Mainframe

«device»
Database Serv er

«execution environment»
Sun Application Serv er w i th Open ESB

Calendar Management Services

Calendar Example::
CalendarSynchronizerService

Calendar Example::
CalendarManagementService

Calendar
Example::

Calendar System

CalendarSystem

«execution environment»
Sun Applica tion Serv er

Smart Home Services

Calendar
Example::

SensorService

Calendar
Example::
SensorKIT

Calendar
Example::

ExternalNotification

ExternalNotifcationService

SensorService

Calendar
Example::

Hom eCare
Application

CalendarService

Calendar
Example::

CareControl
Application

The common services
can run on any
platform that supports
web services. For this
reason, not specific
technology is specified.

«deploy»

«manifest»«manifest»

110 73

«use» «use»
«use»

«deploy»

«HL7Messages»

«HL7Messages»

«manifest»

«manifest»

«HL7Messages»

«HL7Messages»

«HL7Messages»

«HL7Messages»

«manifest»

SOAP/HTTP/IP

SOAP/HTTP/IP

SOAP/HTTP/IP

Figure 27: Example of MPOWER system deployment

To provide a brief overview of which platform components that are required to get a
MPOWER based system up and running, a short recommendation of platform components is
given in the table below. This is a recommendation, and other products can be used if they
provide the same functionality.

 Page 50 of 87

D1.1 Overall Architecture

Platform Artefact Smart Home Care Center Common Service
Provider

Sun Application
Server 9.x / Glassfish

v2

Sun Application
Server 9.x / Glassfish

v2

Sun Application
Server 9.x / Glassfish

v2

Application Server

Hibernate using
MSSQL, MySql,

Oracle

Hibernate on top of
legacy system
database layer

Hibernate Database

Optional. Open ESB
v2 recommended

Open ESB v2 Optional Business Execution
Server

Java Messaging
Server

Java Messaging
Server

Java Messaging
Server

Messaging Server

Tablet PC PC Optional Client Terminal

Laptop PC or
Stationary PC

Server Mainframe Server

ADSL/SDSL SDSL SDSL Network (minimum)

Table 2: Platform artefacts and implementation technologies

9.1 MPOWER Recommended Deployment Platform
MPOWER services are implemented as Web Services [29, 31] that can be composed into
business process services using Business Process Executive Language (BPEL) [34].

For data persistence, Hibernate and any some alternatives of databases can be used. MySql
and Oracle XE are two eminent and free alternatives. MPOWER uses Hibernate as a data
access layer from the web services.

Open ESB v2 provides the required BPEL support a part of the BPEL Engine. A built-in
XSLT engine in Open ESB v2 can be used for XML transformation at the business service
layer

9.1.1 Application Server
The Java System Application 9.1 is based on Project GlassFish, a community building an
enterprise class Java EE 5 application server with clustering for scalability and availability,
advanced administration and best-in-class performance. The Java System Application Server
9.1 is available with cost-efficient annual subscriptions. Customers no longer have to choose
between open source and enterprise features.

Java System Application Server Platform Edition 9.0 Update 1 is the industry's first free,
robust, commercial-grade Java EE 5 compatible application server. Starts faster, uses less
memory and incorporates Java EE 5 features such as EJB 3.0, JSF 1.2 and annotations that
help developers write and deploy applications more quickly using 30-90% less code. The
server represents the latest Java technology that makes building robust, scalable enterprise
applications easier than ever and is the perfect platform for implementing SOA and Web 2.0
applications.

 Page 51 of 87

http://glassfish.java.net/
http://www.sun.com/software/products/appsrvr_pe/index.xml

D1.1 Overall Architecture

6Glassfish V2 is a free, open source application server which implements the newest features
in the Java EE 5 platform. The Java EE 5 platform includes the latest versions of technologies
such as such as JavaServer Pages (JSP) 2.1, JavaServer Faces(JSF) 1.2, Servlet 2.4, Enterprise
JavaBeans 3.0, Java API for Web Services(JAX-WS) 2.0, Java Architecture for XML
Binding(JAXB) 2.0, Web Services Metadata for the Java Platform 1.0, and many other new
technologies.

9.1.2 Business Process Execution
7Open ESB V2 Preview 3 : Open ESB V2 Preview 3 implements a Java Business Integration

(JBI) runtime that incorporates the JSR 208 specification for Java Business Integration and
other open standards. Open ESB allows you to integrate web services and enterprise
applications as loosely coupled composite applications, realizing the benefits of a service-
oriented architecture (SOA).

Open ESB supports pluggable service engines and communication protocol bindings as well
as dynamic, configurable, message management and delivery. When installed with Java
Application Platform SDK Update 3 Beta or NetBeans IDE 6.0 Beta 1, Open ESB includes
the JBI Runtime and the service engines and binding components listed below. Developers
can also create additional plug-in components to fit specific integration tasks.

Component/Feature Description

JBI Framework Runtime that implements a JBI instance. The JBI Runtime is a
standard feature of Sun Java System Application Server 9.1.

BPEL Service Engine Provides services for executing Web Services Business Process
Execution Language 2.0 (WS-BPEL, or BPEL) compliant
business processes.

Connects Java EE web services to JBI components. Java EE Service
Engine

SQL Service Engine Provides SQL execution services to other JBI components.

XSLT Service Engine Transforms XML documents using XSL style sheets.

File Binding
Component

Provides a transport service to a file system and offers a
comprehensive solution to interact with the file system from the
JBI environment.

HTTP Binding
Component

Provides external connectivity for SOAP over HTTP in a JBI 1.0
compliant environment.

JMS Binding
Component

Provides Java Messaging Service (JMS) transport for inbound
and outbound messages.

6 http://www.sun.com/software/products/appsrvr/index.xml https://glassfish.dev.java.net/
7 http://java.sun.com/integration/openesb2_0/

 Page 52 of 87

http://www.sun.com/software/products/appsrvr/index.xml
http://java.sun.com/integration/openesb2_0/

D1.1 Overall Architecture

9.1.3 Databases and Data Access
MPOWER Services need to access data in different databases as well as store platform-
related information such as context information and rules. Hibernate is chosen as the platform
data access layer whereas several databases can be used as the underlying repository.

Below is a summary of the technologies. References to the original source, downloads and
more details are given.

8• Hibernate: Hibernate is a powerful, high performance object/relational persistence
and query service. Hibernate lets you develop persistent classes following object-
oriented idiom - including association, inheritance, polymorphism, composition, and
collections. Hibernate allows you to express queries in its own portable SQL
extension (HQL), as well as in native SQL, or with an object-oriented Criteria and
Example API.

9• Oracle XE : Oracle Database 10g Express Edition (Oracle Database XE) is an entry-
level, small-footprint database based on the Oracle Database 10g Release 2 code base
that's free to develop, deploy, and distribute; fast to download; and simple to
administer.

10• MySql : A simple, yet powerful Open Source Software relational database
management system that uses SQL.

11• MSSQL: Microsoft SQL Server 2005 is comprehensive, integrated data
management and analysis software that enables organizations to reliably manage
mission-critical information and confidently run today’s increasingly complex
business applications. SQL Server 2005 allows companies to gain greater insight
from their business information and achieve faster results for a competitive
advantage.

9.1.4 Messaging
Provided as a part of Open ESB (see section 9.1.2)

9.1.5 Communication networks
Communication of information uses HL7 messages wrapped in SOAP envelopes transferred
using HTTP over TCP-IP. In some cases, specific security measures must be taken, e.g. when
communicating with restricted health networks.

9.1.6 Firewall Issues
Web Services uses SOAP over HTTP for communication. This implies that port 80 needs to
allow for bidirectional communication.

8 http://www.hibernate.org
9 http://www.oracle.com/technology/products/database/xe/index.html
10 http://www.mysql.com
11 http://www.microsoft.com/sql/default.mspx

 Page 53 of 87

http://www.hibernate.org/
http://www.oracle.com/technology/products/database/xe/index.html
http://www.microsoft.com/sql/default.mspx

D1.1 Overall Architecture

10 Related work

10.1 Healthcare Service Specification Project (HSSP)
12The HSSP project is a collaborative effort between Health Level Seven and the Object

Management Group13 to identify and document service specifications, functionality, and
conformance supportive and relevant to healthcare IT stakeholders and resulting in real-world
implementations. In addition, several other groups have joined the HSSP14 effort.

10.2 Open Healthcare Framework
15The Eclipse Open Healthcare Framework (OHF) is a project within Eclipse formed for the

purpose of expediting healthcare informatics technology. The project is composed of
extensible frameworks and tools which emphasize the use of existing and emerging standards
in order to encourage interoperable open source infrastructure, thereby lowering integration
barriers. We currently provide tools and Frameworks for HL7, IHE, Terminology, Devices,
and Public Healthcare Maintenance.

The OHF Project is currently in incubation. (October 2008)

12 http://www.hl7.org
13 http://www.omg.org
14 http://hssp.wikispaces.com
15 http://www.eclipse.org/ohf/

 Page 54 of 87

http://www.hl7.org/
http://www.omg.org/
http://hssp.wikispaces.com/
http://www.eclipse.org/ohf/

D1.1 Overall Architecture

References
1. Erl, T., Service-Oriented Architecture Concepts, Technology, and Design. The

Prentice Hall Service-Oriented Computing Series ed. T. Erl. 2006, Crawfordswille,
Indiana, USA: Prentice Hall.

2. OASIS Open, Reference Model for Service Oriented Architecture 1.0, C. Matthew
MacKenzie, et al., Editors. 2006, OASIS Open.

3. University of Cyprus (UCY), MPOWER D2.1 Relevant Standards and Sensors. 2007,
MPOWER Consortium, FP6 STREP 034707.

4. Austrian Research Center (ARC), MPOWER D4.1 Interoperability Standards and
Technology Overview. 2007, MPOWER Consortium, FP6 STREP 034707.

5. University of Cyprus (UCY), MPOWER D5.1 Security Standards and Technology
Overview. 2007, MPOWER Consortium, FP6 STREP 034707.

6. Gamma, E., Design patterns: elements of reusable object-oriented software. 1995.
7. Ali Arsanjani. Service-oriented modeling and architecture: How to identify, specify,

and realize services for your SOA. 2004 [cited 2007 November 2]; Available from:
http://www-128.ibm.com/developerworks/webservices/library/ws-soa-design1/.

8. Honey, A., A. Dutta, M. Kumar, and M. Christian, SOA4HL7 Architecture Document,
A. Dutta, Editor. 2006, Health Level Seven. p. 76.

9. Stahl, T. and M. Völter, Model-driven software development: technology,
engineering, management. 2006, Chichester: Wiley. XVI, 428 s.

10. Object Management Group (OMG), MDA Guide Version 1.0.1, J. Miller and J.
Mukerji, Editors. 2003, Object Management Group. p. 1-62.

11. Miller, J. and J. Mukerji, MDA Guide Version 1.0.1, J. Miller and J. Mukerji, Editors.
2003, Object Management Group (OMG). p. 1-62.

12. Object Management Group (OMG), UML 2.0 Superstructure FTF Rose model
containing the UML 2 metamodel. 2005, Object Management Group (OMG).

13. Mellor, S.J., MDA Distilled: Principles of Model-Driven Architecture. 2004.
14. Rosen, M., MDA, SOA, and Technology Convergence, in The MDA Journal Straight

from the Masters, David S. Frankel and John Parodi, Editors. 2004, Meghan-Kiffer
Press: Tampa, Florida, USA. p. 62-79.

15. Object Management Group (OMG), Object Constraint Language (OCL), Version 2.0.
2006, Object Management Group. p. 1-232.

16. Warmer, J.B., "Object Constraint Language, The: Getting Your Models Ready for
MDA, Second Edition". 2003.

17. CEN TC251, EN 13940-1: Health Informatics - System of Concepts to Support
Continuity of Care - Part 1: Basic Consepts. 2006, European Committee for
Standardization. p. 105.

18. World Wide Web Consortium (W3C), Web Services Architecture, D. Booth, et al.,
Editors. 2004, W3C.

19. World Wide Web Consortium (W3C), Web Services Description Language (WSDL)
Version 2.0 Part 1: Core Language, R. Chinnic, et al., Editors. 2007, W3C.

20. OASIS Open Web Services Business Process Execution Language Version 2.0, A.
Alves, et al., Editors. 2007, OASIS.

 Page 55 of 87

http://www-128.ibm.com/developerworks/webservices/library/ws-soa-design1/

D1.1 Overall Architecture

Appendix A IBM Reference Architecture SOA

A.1 An architectural template for SOA
The IBM Reference architecture defines 7 layers. They are presented on the next picture and
description of the each layer is given below.

Figure 28 IBM SOA Reference Architecture

Layer 1: Operational systems layer. This consists of existing custom built applications,
otherwise called legacy systems, including existing CRM and ERP packaged applications,
and older object-oriented system implementations, as well as business intelligence
applications. The composite layered architecture of an SOA can leverage existing systems and
integrate them using service-oriented integration techniques.

Layer 2: Enterprise components layer. This is the layer of enterprise components that are
responsible for realizing functionality and maintaining the QoS of the exposed services. This
layer typically uses container-based technologies such as application servers to implement the
components, workload management, high-availability, and load balancing.

Layer 3: Services layer. The services the business chooses to fund and expose reside in this
layer. They can be discovered or be statically bound and then invoked, or possibly,
choreographed into a composite service.

Level 4: Business process composition or choreography layer. Compositions and
choreographies of services exposed in Layer 3 are defined in this layer. Services are bundled
into a flow through orchestration or choreography, and thus act together as a single
application. These applications support specific use cases and business processes.

Layer 5: Access or presentation layer. This layer is usually out of scope for discussions
around a SOA.

Level 6: Integration (ESB). This layer enables the integration of services through the
introduction of a reliable set of capabilities, such as intelligent routing, protocol mediation,
and other transformation mechanisms, often described as the ESB. Web Services Description
Language (WSDL) specifies a binding, which implies a location where the service is
provided. On the other hand, an ESB provides a location independent mechanism for
integration.

 Page 56 of 87

D1.1 Overall Architecture

Level 7: QoS. This layer provides the capabilities required to monitor, manage, and maintain
QoS such as security, performance, and availability. This is a background process through
sense-and-respond mechanisms and tools that monitor the health of SOA applications,
including the all important standards implementations of WS-Management and other relevant
protocols and standards that implement quality of service for a SOA.

A.2 IBM SOA Architectural template and MPOWER Platform
Following IBM SOA Architectural template we can define that layers 2, 3, 6 and 7 are in the
focus of the platform. As MPOWER platform is build from scratches there are no existing
legacy systems that need to be wrapped but however there are different sensors and actuators
that need to be exposed as services independent of their vendor, type or communication
standard and extern systems like HIS for which adapter will have to be made so that they can
successfully communicate with MPOWER platform. We have called this layer “Physical
layer”. The MPOWER architecture that follows the IBM SOA Reference architecture is
presented on the next picture.

Business
Processes
Composition,
choreography

Application
Layer

(Consumers)

Physical
Layer

Service
Components

Services
atomic and
composite

Se
curity

Au
diting

Logging
M

anagem
ent

M
onitoring

Q
oS Layer

Integration Service Bus

Service D
iscovery

Context middleware

Social middleware

Medical middleware

WP3

3rd
Party

3rd
Party

3rd party O
rchestration S

erver

WP2

Smart home middleware

WP4

WP5

WP6

Poc Application Poc Application Poc Application

QoS middleware (inc. security)
Interoperability middleware

HIS
Other

External
system

Figure 29 MPOWER Reference Architecture

A.3 Modelling styles using this reference architecture
Although IBM defines reference architecture for building SOA applications there are different
ways how this applications can be modelled following the above mentioned architecture. The
main modelling principles have to be defined for layers 2 and 3 that are closely connected. To
solve this problem, Independent Software Vendor (ISV) partners are collaborating to create a
specification for building systems that use service-oriented architecture. This specification is
known as service-component architecture (SCA) specification and it briefly defines how
service components are created, implemented and composed. The second and third layers that
are presented on the following picture will be briefly described. This includes the description
of the following terms: Service, Service component (or Enterprise component) and Composite
(or Composite services).

 Page 57 of 87

D1.1 Overall Architecture

Figure 30 Cooperation between services and enterprise components

A.3.1 Component (or Service component or Enterprise component)
Following SCA specification, Component is the main unit of construction. A Component
consists of a configured instance of an implementation, where an implementation is the piece
of program code providing business functions. The business function is offered for use by
other components as services. Implementations may depend on services provided by other
components – these dependencies are called references. Implementations can have settable
properties, which are data values which influence the operation of the business function. The
component configures the implementation by providing values for the properties and by
wiring the references to services provided by other components. The next picture presents a
component and elements that are relevant for it.

uc Component

Component
Services References

Properties

Implementation:
 Java
 Composite
 ...

Figure 31 Explanation of component in SOA story

• Properties allow for the configuration of an implementation with externally set
values.

• A Reference represents a requirement that the implementation has on a service
provided by another component.

• A Service represents an addressable interface of the implementation.

 Page 58 of 87

D1.1 Overall Architecture

A.3.2 Composite (or Composite services)

Figure 32 Way of building composite services

A composite contains a set of components, services, references and the wires that interconnect
them, plus a set of properties which can be used to configure components. An composite is
presented on the SOA reference architecture picture as an ellipse in the services layer. It
composes different services with goal of providing new granular business functionality.

 Page 59 of 87

D1.1 Overall Architecture

Appendix B UML Profiles for Homecare

The following text is from the article:

Walderhaug, S., E. Stav, and M. Mikalsen, Experiences from model-driven development of
homecare services: UML profiles and domain models. in 2nd International Workshop on
Model-Based Design of Trustworthy Health Information Systems (MOTHIS 2008). 2008.
Toulouse: Springer

Experiences from model-driven development of homecare services:
UML profiles and domain models

Ståle Walderhaug1+2 1, Erlend Stav and Marius Mikalsen1

{stale.walderhaug | erlend.stav | marius.mikalsen}@sintef.no,
1SINTEF ICT, SP Andersens vei 15b, N-7465 Trondheim, Norway

2Department of Computer Science, University of Tromsø, N-9000 Tromsø, Norway

Abstract. Model-driven development approaches such as OMG’s Model Driven Architecture
(MDA) have been proposed as the new paradigm for software development. However, the
adoption of MDA is still low, partly because of the general-purpose modelling language being
used. Domain specific modelling languages are being developed for technological and industrial
domains to improve the expressiveness and effect of model-driven development techniques. The
healthcare domain could benefit from these methodologies to improve development speed and
software quality. In order to incorporate domain knowledge in a MDA process, information about
workflows, artefacts and actors can be formalized in a UML profile and applied by MDA tools for
design and development. This paper presents the results from the work done on model-driven
development of smart homecare services in the MPOWER project. Following an iterative
approach, two UML profiles to support development of Service Oriented Architecture based
homecare applications are proposed. The profiles are based on a comprehensive domain
investigation and best practice methods for domain specific modelling language development.
Using homecare specific UML profiles indicate an improvement in the process for model-driven
development of homecare services, and more evaluation will be conducted in an experiment in
2009.

B.1 Introduction
Model-Driven Development (MDD) such as OMG’s Model Driven Architecture (MDA) [10], has the
potential to improve the quality of software systems. Quality attributes such as interoperability,
reusability and appropriateness of software components and systems are main features of MDA.. By
using abstraction and advanced automation techniques, software artefacts are created from formal
models that are represented using languages such as the Unified Modeling Language (UML) [35]. The
core of the MDA process, and similar MDD processes, is to use formal models as the main
development artefacts in the entire development process, from domain analysis to implementation,
deployment and testing.

 Domain specific modelling languages (DSML) have been proposed as a means to overcome many
of the shortcomings with UML and MDA. The scientific knowledge about applying MDD techniques
in design and development of healthcare information systems is scarce [36]. Creating DSMLs for the
healthcare domain is a daunting task, and requires extensive investment of resources and time.

We set out to investigate how MDD with DSML support should be introduced and applied in a
healthcare sub domain. In the MPOWER project [37], we have developed a framework for creating
homecare software services using a model-driven approach. The framework defines a MDA toolchain
which is a set of modelling, transformation and development tools that supports the complete MDA
process as descibed in the MDA Guide [10]. A comprehensive model of actors and services in
homecare along with the MDA toolchain for designing and implementing these domain specific web
services has been developed and evaluated.

This paper presents research results from the project with focus on:

 Page 60 of 87

D1.1 Overall Architecture

1. What is the domain knowledge in homecare that can be used as assets in the MDA process?

2. Which knowledge can be included in a UML Profile for homecare services and how can this
knowledge be utilized by developers?

The MPOWER toolchain, providing model traceability, model transformation and code generation, has
been evaluated in the development of two proof-of-concept applications and is currently been
redesigned with improved UML Profile support for the domain. Based on the experience from
developing the MPOWER framework and proof-of-concept applications a conceptual domain model
and UML profile for service oriented computing in the homecare domain is proposed and discussed.

The rest of this paper is organized as follows. In the next section we describe the background for this
work, including relations to and motivations for applying model driven development, domain specific
modelling languages, and service oriented architecture. With this background we proceed to describe
the method applied and main activities within the MPOWER project. The main results from each of the
main activities are presented next, including conceptual domain models and our preliminary DSML
approach based on two UML profiles. A discussion section follows this, before we conclude the paper.

B.2 Background and Related work
The work presented herein is a part of the EU-IST project MPOWER (contract no. 034707) and of an
ongoing PhD thesis work by the main author. MPOWER is a user driven research and development
project where the main goal is to create a framework for rapidly creating standards-based homecare
services. The framework includes the definition of a toolchain which is being used in the development
of two proof-of-concept applications targeting elderly and cognitive impaired people living at home.

MDD promises a potential to improve the quality of software systems and their development by
using formal models as first class entities in the entire development process. When MDD is done
properly, the result may include the following improvements in the development process:

• Domain experts, system architects and developers can discuss concepts and requirements more
effectively because care workflow and concepts are modelled formally.

• Formal modelling of domain concepts allows for more precise understanding of the target system’s
requirements, environment and use scenarios, which will increase the probability for developing a
software system that fulfils its intentions

• Analysis of system behaviour and performance can be conducted in the design phase, facilitating
rapid feedback and agile development processes.

• Keeping models independent of implementation technology and deployment platforms as long as
possible allows for reuse of software models, thus improving interoperability and reducing
development cost.

Tuomainen et al argues that modelling helps the understanding of healthcare activities by being
illustrative, identifying improvements, simulate organisational processes and individual activities in
healthcare [38].They compare three model centric approaches; MDA, Business Process Modelling with
BPMN and BPEL and the HL7 development framework. They conclude that in order to realise their
full potential these approaches require local and project specific adaptation. This paper explains such
an adaptation for the homecare domain.

B.3 Methods
The main objective of the MPOWER project is to create a framework that facilitates rapid development
of homecare services. To achieve this, it is fundamental to acquire knowledge about the homecare
domain, and make this domain knowledge available to actors involved in the system development
processes. Due to the complexity of the healthcare domain, it was considered imperative to iterate
between domain modelling and system design. To facilitate this interaction, the MPOWER project
defined three main activities:

1. Capture domain knowledge from experts on aging/dementia, healthcare workers in the domain,

family carers and patients. The result will be a number of conceptual domain models defining the
actors, actor relationships, core use cases and main system requirements / services of the homecare
domain

2. Specify a MDA toolchain that support documentation of system requirements, modelling of design
and development of services. Moreover, the toolchain must be evaluated in terms of usability and

 Page 61 of 87

D1.1 Overall Architecture

usefulness/performance by implementing two Proof-of-Concept Applications (PoCA). The results
are a MDA toolchain with evaluation reports on developer acceptance and technical qualities

3. Design a DSML that incorporates the domain knowledge from task 1 and MDA toolchain
experience from task 2. The result will be one or more UML profiles that can be used with a revised
MDA toolchain.

The main activities and the expected results are illustrated in Figure 33 and described in more detail in
the following.

act Work Process

Activity 1: Capture
homecare domain

knowledge

Activity 2: Design
and evaluate a

MDA toolchain for
homecare service

development

Activity 3:
Develop a

Domain Specific
Modelling

Language for
homecare

Homecare SOA
UML Profiles

MDA Toolchain
experience

MDA Toolchain

Condeptual
Domain Models

The toolchain will use the Homecare SOA UML
profiles after the first iteration of the process

«flow»

use

«flow»

«flow»

use

use

«flow»

«use»

Figure 33 The three main project activities and their work products

B.3.1 Activity 1: Capture Domain Knowledge
The MPOWER project focuses on smart homecare solutions for elderly and cognitive impaired people.
The domain models for the work being presented in this paper can be seen from two different
viewpoints:

1. The Homecare viewpoint: this viewpoint focuses on organizational aspects of homecare as well as
the main stakeholders (people and systems) involved. This model is the result of a comprehensive
process involving a total of 140 domain stakeholders such as domain experts, professional
caregivers, family carers and patients [39, 40].

2. The Homecare SOA viewpoint: this viewpoint focuses on the main system components and their
relationships in terms of the principles of Service Oriented Architecture design. Important assets for
this model are the design principles given by Erl [1], and SOA4HL7 methodology [41]. The
structure and semantics of the domain model is supported by the SOA reference architecture from
IBM along with the IBM UML profile for software services [21].

B.3.2 Activity 2: Designing a Toolchain for MDD in Homecare
To have a formal way of specifying the domain models, proper modelling tools are needed. In the
beginning of the MPOWER project, a set of tools were specified as the MPOWER toolchain to be used
by all involved personnel for conceptual modelling, requirements specification, analysis, system
design, system development, deployment and testing. A single toolchain for all involved stakeholders
ensures that information provided by domain experts is readily available for system designers using the
same toolchain. The process used for selection of tools matches the recommendation given by Staron
[42], page 240: “The process [of creating domain models] should be tool independent. The
independence should be supported by using technologies that are open and unbounded, but at the same
time supported by more than one tool.” The following tools were used:
• Microsoft Word 2003: Used for describing user scenarios. MS Word was available to all project

participants involved in the process
• Enterprise Architect (EA) V6.5 from Sparx Systems: Used for UML modelling of use cases and

services, model transformation and code generation of WSDL code.
• IBM’s UML 2.0 profile for Software Services: Used during modelling the services to structure

models and stereotype core elements. Available from IBM [21].
• NetBeans V6.0: Used as Java IDE for generating service skeletons and implementing the services.

Open source using open standards, http://www.netbeans.org

 Page 62 of 87

D1.1 Overall Architecture

The described toolchain was used from the start of the project with only minor modifications such as
EA upgrades and bug fixes. The two PoCAs were developed using the toolchain and the performance
of the toolchain, were investigated from two perspectives: 1) Developer acceptance of the MPOWER
toolchain: using the Technology Acceptance Model with two additional factors, as reported in [43], and
2) Technical review: Weekly scrum and quarterly technical meetings with workshop sessions on how
to improve the toolchain.

B.3.3 Activity 3: Refine the MPOWER toolchain and develop a DSML
The UML standard allows for the creation of a DSML in two ways: 1) Creating a new language based
on Meta Object Facility [32], or 2) extending UML through the use of UML Profiles. As discussed by
Selic, the latter will often be the most practical and cost-effective solution [44], and is also the chosen
method for this paper. By using UML profiles to create a DSML, the semantics and syntax of UML can
be inherited, and powerful UML/MDA tools can be used with the profile for software development.

The UML Profile standard [35], outlines several reasons for creating a DSML from UML. The most
pertinent reasons for the challenges addressed in this paper are:

• Terminology adapted to the healthcare domain
• Add information that can be used during transformation
• Add constraints that restrict the way you can use the metamodel

Despite the fact that DSMLs are becoming more and more popular in systems modelling, there is not
much knowledge in the scientific community about best practices for creating DSMLs with UML [44,
45]. However, in a paper from 2007, Selic summarized the basic steps for creating a DSML in terms of
UML in [44]:

1. Create a conceptual domain model: The model should include the essential concepts of the domain,
the relationships between the concepts, the constraints that govern the use of the concepts. In
addition, syntax and semantics of the notation should be provided. A selection of UML models from
Activity 1 makes up the conceptual domain model.

2. Map domain model to a UML profile, refining the core UML specification with stereotypes, tagged
values and constraints. In addition, a library of domain specific modelling elements (model library)
can be defined for reuse.

The process of creating a domain specific UML profile is not straightforward, since the level of
abstraction and the intended use of the profile play an important role for the definition of the profile
elements. This challenge is tackled with experience from the design of the MPOWER toolchain and
development of two MPOWER PoCAs for the homecare domain.

To identify and model the elements of a UML profile is an iterative process. To guide this process,
the Staron’s guidelines for defining good stereotypes using a classification schema [42], is used. This
classification is based on the stereotype’s role and expressiveness.

B.4 Results
The results presented in this section are based on the work carried out in the MPOWER project from
October 2006 to June 2008.

B.4.1 Activity 1: Conceptual Domain models
The domain models were developed in several iterations from October 2006 to September 2007.
Details about the process and findings from the user needs investigation from which the domain models
are derived can be found in [39].

Figure 34 shows the main concepts from a homecare viewpoint. To keep the model at an abstract
level and not overpopulate it with unnecessary details, most attributes on the classes are hidden. The
main classes and relationships are:
• Subject of Care (SoC): This is the person receiving care through a homecare program. The SoC has

a unique identifier that is managed by the assigned healthcare organization. A SoC must be
associated with at least one healthcare professional.

• Homecare Program: a class comprising the services, devices and healthcare organizations involved
in providing homecare service to a SoC.

• Carer: an individual that is a part of the family, a healthcare professional or a friend. All
HealthcareProfessionals must be associated with a HealthcareOrganization.

 Page 63 of 87

D1.1 Overall Architecture

• Healthcare Organization: an organisation that is directly involved in the provision of care to a SoC.
• Homecare Service: a service provided to the SoC through a Homecare program. Three core types of

services have been identified: information service (e.g., calendar, educational material access,
medication list), communication services (e.g. SMS, email), and assistive service (e.g. indoor
location service, heating control, burglar alarm, oven control).

Concepts in the model are aligned with the concepts presented in Continuity of Care (CONTSYS)
standard from CEN TC251 [26], and service categories from [46]. Most concepts are also available in
the HL7 RIM, but CONTSYS is more specific than HL7. These resources were found useful in
selecting an appropriate abstraction level and structure in the domain model. The complete models of
actors and services are presented in [40].

class Homecare domain model

Home-ResidenceHealthcareProfessional HealthcareOrganization

- hcp_id: long - hco_id: String

SubjectOfCare

- soc_id: long

Friend

«enumeration»
SensorType

+isinvolvedin medical = 0
 domotic = 1
 physiological = 2
 other = 3

Sensor

- sensortype: SensorType

HomeCareDevice

- device_id: String

AssistiveService

AssistiveDevice

InformationService

HomeCareProgram

- startDate: Date
- stopDate: Date

Carer

- guardian: boolean

Familymember HomecareService

- serviceID: int

CommunicationService

+involves
0..*

1..*+isregsiteredwith 1..*

+ismanagedby

+cares for 1..*

1..*1..*

+receives care 0..*

0..1

1..*
0..*

Figure 34 Diagram showing the main concepts in a smart homecare domain

class Serv iceOriented HomeCare

HomeCareService CareCenterService

«ApplicationLayer»
HomecareApplication

«BusinessServiceLayer»
BusinessService

- applicationType: String

«ResourceLayer»
InformationSystem

«ResourceLayer»
CommunicationNetwork

«ServiceLayer»
Service

- communicationStandard: String
- healthcareMessagingStandard: String
- isSecure: boolean

«ServiceComponentLayer»
ResourceAdapter

- resourceType: String

«ResourceLayer»
SensorNetwork

E.g., sensordriver,
database driver and
communicationadapter

Figure 35 The Service-oriented view on a typical homecare environment

Figure 35 shows the main components, stereotyped with the five layers of the IBM SOA reference
architecture.

B.4.2 Activity 2: The MPOWER Toolchain
The experiences from using the described toolchain for development of the services that form the
PoCAs are grouped into developers’ subjective experience and technical experience. The first group
entails perceived characteristics such as the factors described by the Technology Acceptance Model
[47]. The results from a developer evaluation of the MPOWER toolchain is presented in [43], and
concludes that perceived ease of use and perceived usefulness are factors that affect the developers’
adoption of MDA. It was also found that traceability between artefacts in the development process was
useful. A major drawback with the evaluated toolchain was found to be the incomplete code generation
features. A technical review of the MPOWER toolchain revealed that 1) WSDL model transformation
incomplete: it was necessary to customize the transformation template for WSDL models, 2) WSDL
code generation had errors: the built-in transformations in the EA tool generated some errors that had

 Page 64 of 87

D1.1 Overall Architecture

to be changed manually, e.g. using “type” references instead of “element” references in message
definitions, and 3) Performance problems using HL7: the import of HL7 message types into WSDL
resulted in tool crashes because of memory allocation problems. Recursive import of HL7 xml schema
(xsd) definitions were not handled by the WSImport tools in Netbeans.

From the experience with the MPOWER toolchain, a set of new features were proposed. The
developers ould like more support in generating the implementation of the services – repetitive code
(e.g. for DB management, handling of security, return status), and support for object/relational
persistence service, such as generation of Hibernate mappings for the information elements declared in
the message definitions of the WSDLs. These features may impact the design of a DSML as they could
require domain specific information to be incorporated into the models during the service design.

B.4.3 Activity 3: Refined Toolchain - Mapping of Domain Concepts to DSML -
UML Profile

The process of defining a UML Profile for SOA in homecare use concepts from the conceptual domain
models and experience from toolchain and PoCA development in an iterative approach. This section
presents the preliminary results from Activity 3 after the first iteration (January-June 2008). Activity 3
is carried out by a core team of three researchers. However, some discussions are brought into the
development team mailing list (16 developers). The profiles were updated in three main revisions:
initial version for the start of the development, second version after first version of services and the
third version after the first iteration of the PoCA development. The changes between version one and
two were significant, whereas only tags and minor adjustments to relationships were done for version
3.

Two UML profiles are proposed, the Homecare UML Profile and the SOA Homecare UML Profile.
The profiles can be used separately or together in a MDA development project, depending on how the
profile elements are utilized in the development process.

B.4.4 Homecare UML profile
Figure 36 shows the Homecare UML profile. The profile elements are mainly derived from the
homecare conceptual model (Figure 34). The tagged values on the stereotypes were identified based on
experience from the MDA toolchain work. The mapping of concepts to the UML profile was also
guided by the CONTSYS standard [26].

Table 3. Table describing the proposed stereotypes in and tagged values in the Homecare UML profile

Stereotype Comment
SubjectOfCare Subject of care (SoC) is defined in CONTSYS as ”person seeking to

receive, receiving, or having received health care” [26]. Used to
decorate SoC modelling elements and to add information about the
SoC that can be used during model transformation or code
generation, e.g., to generate interface classes for EHR systems and
individual plan systems.

SoC_type: describes can be used to describe different types of
SoC according to national or healthcare enterprise specific patient
classifications.

Carer A stereotype that should be used on all modelling elements
representing an individual that provides care, professionals as well
as non-professional caregivers.

roles: can be used to set the default role, e.g. in terms of security,
for the instances of classes marked with this stereotype.

Healthcare
Professional
(HcP)

Defined in CONTSYS as “person authorised by a nationally defined
mechanism to be involved in the direct provision of certain health
care activities” [26]. Should be used to mark all modelling elements
of type Class/Actor that are representing individuals that fit this
definition. The roles attribute is inherited from Carer.

Other Carer Defined in CONTSYS as “person providing assistance for activities

of daily living or social support”. This stereotype should be used to
mark modelling elements of type Class/Actor that are representing
individuals such as family members, friends and other carers
employed by non-healthcare organizations such as home services

 Page 65 of 87

D1.1 Overall Architecture

and security services. The roles attribute is inherited from Carer
Healthcare
Organization

Defined in CONTSYS as “organisation involved in the direct
provision of health care” [26]. This stereotype should be used to
mark all modelling elements of type Class/Actor that represents
organisations that fits the CONTSYS definition.

(HcO)

orgainsationType: is used to describe the type of organisation
according to speciality levels, private versus public or other national
classifications.

Homecare
Device

Generic homecare device stereotype to be used on modelling
elements of type Class/Actor. The stereotype can be useful for
design-time checking of interoperability and interconnectivity of
devices in a homecare system.

deviceType: describes the type of this device, e.g. whether it is
medical or domotic.

interfaceType: describes the kind of interface used to connect to
this device. In the UML profile, the HomecareDeviceInterface
enumeration is defined based on the experience in the MPOWER
project. This enumeration includes the most used interface types,
and can be refined to fit other technologies.

Healthcare
Professional
For
SubjectOfCare

 A stereotype that is used to mark an association between a
HealthcareProfessional and a SubjectOfCare. The stereotype can be
used to ensure that a SubjectOfCare is associated with at least one
HealthcareProfessional.

EmployedAt A stereotype that is used to mark an association between a
HealthcareProfessional and a HealthcareOrganisation. The
stereotype can be used to check that all HealthcareProfessional
“types” are employed at a HealthcareOrganisation “type”.

pkg Homecare UML Profile

OtherCarer

HomecareDevice HealthcareOrganization HealthcareProfessionalForSubjectofCare

- deviceType: String
- InterfaceType: HomecareDeviceInterface

HealthcareProfessional
«stereotype»
Attributes
- healthcareProfessionType: String

SubjectOfCare
«stereotype»
Attributes
- socType: String

- organizationType: String

«metaclass»
Actor

«metaclass»
Class

+ isActive: Boolean

«metaclass»
Association

+ direction: Direction = Source -> Desti...

EmployedAtCarer

- roles: String

«enumeration»
HomecareDev iceInterface

 Konnex = 1
 Wired-Serial = 2
 USB = 3
 Bluetooth-Serial = 4
 Bluetooth-Medical = 5
 Proprietary = 6
 Other = 0

«extends»
«extends» «extends»

«extends»«extends»

«extends»«extends» «extends»

«extends»

«extends»

Figure 36 First version of Homecare UML Profile

All the stereotypes in the Homecare UML Profile falls into the category “Virtual Metamodel
Extension, restrictive” defined by Staron in [42]. These are stereotypes that reuse the semantics of the
metaclasses (e.g. Actor and Class). Often the must be used with other stereotypes, making the
stereotyped model element more precise and may also add a new icon to the concrete syntax to
familiarize the model presentation (e.g. icons on HealthcareProfessional and SubjectOfCare).

B.4.5 SOA Homecare UML Profile
The SOA Homecare UML profile enables developers to create precise models of SOA-based homecare
systems.

 Page 66 of 87

D1.1 Overall Architecture

Table 4. List of stereotypes and tagged values in the SOA Homecare UML Profile

Stereotype Comment
Homecare
Application

A stereotype used to mark modelling elements of type Component and
Class. The stereotype adds two properties to the modelling elements:

securityLevel: this describes the security level of the application.
This can be used to check that a user (i.e., service, component,
application) of the application must have at least the same access level
in order to be allowed to use the service. For service composition, this
information can be used to check that the application can access
security-enabled services.

applicationType: this describe the type of application this is, e.g. in
terms of deployment configurations.

Homecare
Service

A service which is used in the homecare environment. The IBM
Service Profile should be used in combination with this stereotype.

securityLevel: this describes the security level of the service. This
allows for specification of the security requirements and rights for a
modelling element that can be utilized during code generation. In the
next version of the UML Profile, this stereotype will be updated with
more security tags addressing service-service authorization and
information encryption.

Homecare
Message

To denote elements that are messages used in interactions of homecare
services and applications.

isPersistent: indicates whether the message data is stored in a
database or not. This can be used for creating Hibernate mapping code
and database schema.

messagingStandard: the standard to which this message belongs.
Can be used both for code generation, ensuring correct libraries are
present, and for checking conformance with the standard.

Assistive
Service

A type of homecare service that provides assistive functionality in the
homecare system. Derived from Stefanov’s classification for smart
house services for elderly and cognitive disabled [46].

Information
Service

An information service which will be used by stakeholders in a
homecare setting. The service can be medically related, but can also be
other services e.g. used for social interaction by the subject of care.

serviceType: defines the type of information service this service
belongs to. An enumeration is proposed based on the experience in the
MPOWER project. This enumeration can be refined in other projects
using other kinds of information sources.

UsesHomecare
Message

A stereotype that mark associations between a HomecareService and a
HomecareMessage. The stereotype can be used to generate traceability
information that can again be used when messaging standards are
being updated or changed.

UsesHomecare
Service

A stereotype that mark associations between a HomecareApplication
and a HomecareService. The stereotype can be used to generate
traceability information that again can be used when a homecare
service is being updated or changed.

 Page 67 of 87

D1.1 Overall Architecture

pkg SOA Homecare UML Profile

HomecareApplication

- applicationType: String
- securityLevel: int

HomecareService

- securityLevel: int

AssistiveService InformationService

- informationServiceType: InformationServiceType

CommunicationService

- CommunicationType: int

HomecareMessage

- isPersistent: Boolean
- messagingStandard: String

UsesHomecareServiceUsesHomecareMessage

«metaclass»
Port

«metaclass»
Component

«metaclass»
Class

+ isBehavior: Boolean = false
+ isService: Boolean = true

+ isIndirectlyInstantiated: Boolean = true+ isActive: Boolean

«extends»«extends» «extends» «extends»

«enumeration»
InformationServ iceType«metaclass»

Association
 EHRService = 1
 EducationService = 2
 LeisureService = 3
 PlanService = 4
 Other = 0

+ direction: Direction = Source -> Desti...

«extends» «extends»

Figure 37 The Homecare SOA UML Profile diagram

All stereotypes in the Homecare SOA UML profiles falls into the category “Code generation,
restrictive” defined by Staron [42]. These are stereotypes that extend the base metaclass (e.g., Class and
Port) with some properties to increase the precision of the semantics and restrict the usage.

B.5 Discussion
The work presented in this article is a part of an initiative to develop a model-driven software
development framework for healthcare, focusing on homecare services in the first phase. It is
considered imperative to incorporate domain knowledge into the framework and make this knowledge
readily available for architects and developers in all development phases. This paper presents the
results from creating a domain specific modelling language for homecare using UML Profiles.

Capturing the conceptual domain knowledge for homecare, or any other healthcare sub-domain, is a
daunting task. Many stakeholders are involved, as well as a plethora of information systems, involving
many different coding standards and vocabularies. These factors, in addition to legislative factors and
organisational aspects, make modelling of reusable healthcare domain models difficult, but not
impossible. To succeed in creating a useful model-driven software development process, it is important
to choose the right level of abstraction and in divide the healthcare application areas into well defined
sub-domains.

The homecare domain model shown in Figure 34 shows the most important actors and relationships
between them. The model would fit for modelling most homecare solutions, is aligned with the CEN
TC251 CONTSYS standard [26], and includes the main classifications from Stefanov’s acknowledged
paper on smart house technologies for elderly [46]. The model is the result of a comprehensive domain
analysis process where 140 domain stakeholders from four European countries were involved in
improving the validity of the model [39]. If new concepts are developed for the domain, these can be
added as an extension to the existing homecare model, without compromising the original model and
the related UML profiles.

The Homecare SOA model is based on the domain investigation from the MPOWER project, in
addition to the IBM SOA reference model and IBM UML profile for software services [21]. The
Homecare SOA model provides information about deployment of services and possible configuration
and information sources. The model is on an abstract level, and could in certain cases be refined with
details about security platforms and network connectivity details. Such domain knowledge could be
useful in planning the distribution of services and integration with existing resources, but will also
make the model less suitable for reuse across different healthcare enterprises and nations.

To make the domain knowledge readily available as assets in the development process, UML
profiles were chosen, inline with the recommendations by Selic [44]. UML profiles builds upon the

 Page 68 of 87

D1.1 Overall Architecture

syntax and semantics of UML, and most UML tools support profiles. This is an imperative advantage,
enabling developers to use their favourite UML tool for design and development. The process of
selecting domain concepts to include as stereotypes, tagged values or constraints in a UML model,
requires knowledge about model-driven development, but also experience from modelling systems in
the domain in question. Experience from the development of a MDA toolchain (Activity 2) provided
information about which target software artefacts that should be generated from the models and which
models and diagrams that should be applied for achieving this. This information was of utmost
importance when choosing the metaclass extensions for the elements in the UML profiles.

Model-driven development seeks to represent all development artefacts as modelling elements.
UML profiles are used to customize the modelling language to include familiar concepts that enables
more effective and precise system design and implementation. Stereotypes, the main UML profile
mechanism, can be used for several purposes, as discussed by Staron [42]. The result from the mapping
of domain concepts to a DSML (Activity 3) showed that all stereotypes in the Homecare UML profile
are classified as Virtual Metamodel Extensions. This implies that this profile is mainly used to increase
the expressiveness of the modelling language when designing systems for homecare. A “virtual model
extension restrictive” stereotype, adds a domain specific icon such as a picture of a nurse to the
modelling element, together with a well known domain specific label such as HealthcareProfessional.

The Homecare SOA UML Profile includes elements from the “Code generation, restrictive”
category. This means that the main use of these stereotypes is to improve code generation by providing
domain information so that code generation scripts can create high-quality code. In this paper code
generation was restricted to WSDL and Hibernate code, but other software artefacts can be generated
from the domain information in a UML profile. Test cases, error-checking code, security policy
verification, and result validation may be generated if the required information is available. Examples
are:
• During design of a homecare service, mark the service class with HomecareService, add classes for

the messages that will be used as input and output, mark these with HomecareMessage and set the
tagged value MessagingStandard to the appropriate value. Create an association between the service
and the message by applying the UsesHomecareMessage stereotype on the association. During code
generation, the generator could look up messaging details (syntax, namespaces, etc) in an external
resource and insert this code into e.g., the WSDL types definitions.

• When modelling the information models for a homecare system, mark the patient class with
SubjectOfCare stereotype. To ensure that a patient is associated with a healthcare professional, a
model validator based on OCL [23], can iterate through the patient class’s relationships and look for
a HealthcareProfessionalforSubjectOfCare stereotyped association.

The two proposed UML profiles can be used on the same models to provide different “views”. In
addition, the IBM Software Service UML profile should be used to complement the service design
models for SOA Homecare systems.

B.6 Concluding remarks
Model-driven development approaches can be improved by extending the modelling language with
domain specific concepts. UML Profiles can be used as a mechanism for toolchains based on OMG’s
MDA and UML standards.

The UML Profiles must provide information that can improve the design and/or code generation
processes. The two profiles proposed in this paper are based on solid work on capturing homecare
domain knowledge and experience from developing homecare SOA systems using MDA. Though the
profiles are still undergoing updates and improvements, they can improve modelling process
performance and results.

Another finding from the process is that it is useful to have a development activity in parallel with
specification of the conceptual domain and profile. The experience from this development activity gave
valuable input to the mapping of concepts to DSML processes. This finding extends the proposed
approaches to DSML development in [44, 45, 48].

The MPOWER Toolchain will be evaluated by university students in 2008. In 2009, an experiement
measuring the subjective improvements (perceived characteristics) and objective improvements (e.g.,
reduction of errors, time spent for development) will be conducted with 20 developers from the
healthcare domain.

 Page 69 of 87

D1.1 Overall Architecture

References

1. Erl, T., Service-Oriented Architecture Concepts, Technology, and Design. The
Prentice Hall Service-Oriented Computing Series ed. T. Erl. 2006, Crawfordswille,
Indiana, USA: Prentice Hall.

2. OASIS Open, Reference Model for Service Oriented Architecture 1.0, C. Matthew
MacKenzie, et al., Editors. 2006, OASIS Open.

3. University of Cyprus (UCY), MPOWER D2.1 Relevant Standards and Sensors. 2007,
MPOWER Consortium, FP6 STREP 034707.

4. Austrian Research Center (ARC), MPOWER D4.1 Interoperability Standards and
Technology Overview. 2007, MPOWER Consortium, FP6 STREP 034707.

5. University of Cyprus (UCY), MPOWER D5.1 Security Standards and Technology
Overview. 2007, MPOWER Consortium, FP6 STREP 034707.

6. Gamma, E., Design patterns: elements of reusable object-oriented software. 1995.
7. Ali Arsanjani. Service-oriented modeling and architecture: How to identify, specify,

and realize services for your SOA. 2004 [cited 2007 November 2]; Available from:
http://www-128.ibm.com/developerworks/webservices/library/ws-soa-design1/.

8. Honey, A., et al., SOA4HL7 Architecture Document, A. Dutta, Editor. 2006, Health
Level Seven. p. 76.

9. Stahl, T. and M. Völter, Model-driven software development: technology,
engineering, management. 2006, Chichester: Wiley. XVI, 428 s.

10. Object Management Group (OMG), MDA Guide Version 1.0.1, J. Miller and J.
Mukerji, Editors. 2003, Object Management Group. p. 1-62.

11. Miller, J. and J. Mukerji, MDA Guide Version 1.0.1, J. Miller and J. Mukerji, Editors.
2003, Object Management Group (OMG). p. 1-62.

12. Object Management Group (OMG), UML 2.0 Superstructure FTF Rose model
containing the UML 2 metamodel. 2005, Object Management Group (OMG).

13. Mellor, S.J., MDA Distilled: Principles of Model-Driven Architecture. 2004.
14. Rosen, M., MDA, SOA, and Technology Convergence, in The MDA Journal Straight

from the Masters, David S. Frankel and John Parodi, Editors. 2004, Meghan-Kiffer
Press: Tampa, Florida, USA. p. 62-79.

15. Object Management Group (OMG), Object Constraint Language (OCL), Version 2.0.
2006, Object Management Group. p. 1-232.

16. Warmer, J.B., "Object Constraint Language, The: Getting Your Models Ready for
MDA, Second Edition". 2003.

17. CEN TC251, EN 13940-1: Health Informatics - System of Concepts to Support
Continuity of Care - Part 1: Basic Consepts. 2006, European Committee for
Standardization. p. 105.

18. World Wide Web Consortium (W3C), Web Services Architecture, D. Booth, et al.,
Editors. 2004, W3C.

19. World Wide Web Consortium (W3C), Web Services Description Language (WSDL)
Version 2.0 Part 1: Core Language, R. Chinnic, et al., Editors. 2007, W3C.

20. OASIS Open Web Services Business Process Execution Language Version 2.0, A.
Alves, et al., Editors. 2007, OASIS.

21. Object Management Group (OMG), UML 2.1.2 Superstructure and Infrastructure.
2007, Object Management Group (OMG).

22. Mohagheghi, P. and V. Dehlen, Where Is the Proof?-A Review of Experiences from
Applying MDE in Industry. Model-Drivern Architecture-Foundations and
Applications: 4th European Conference, Ecmda-Fa 2008, Berlin, Germany, June 9-
13, 2008, Proceedings, 2008.

23. MPOWER Consortium. Middleware platform for eMPOWERing cognitive disabled
and elderly. 2006 [cited 2007 January 17]; Available from:
http://www.sintef.no/mpower.

 Page 70 of 87

http://www-128.ibm.com/developerworks/webservices/library/ws-soa-design1/
http://www.sintef.no/mpower

D1.1 Overall Architecture

24. Tuomainen, M., et al. Model-centric approaches for the development of health
information systems. in Medinfo. 2007. Brisbane, Australia.

25. Holthe, T., et al., Analysing user needs prior to technology development for
supporting older people and people with cognitive impairments at home. Experiences
from the MPOWER–project. International Journal of Medical Informatics, 2008.
submitted July 2008.

26. Walderhaug, S., E. Stav, and M. Mikalsen, Reusing models of actors and services in
smart homecare to improve sustainability. Stud Health Technol Inform, 2008. 136: p.
107-12.

27. Honey, A. and B. Lund, Service Oriented Architecture and HL7 v3: Methodology.
2006, HL7 Service Oriented Architecture Special Interest Group (SOA SIG). p. 79.

28. Johnston, S. UML 2.0 Profile for Software Services. 2005 [cited 2007 June 15];
Available from: http://www.ibm.com/developerworks/rational/library/05/419_soa/.

29. Staron, M., Improving modeling with UML by stereotype-based language
customization, in School of Engineering. 2005, Blekinge Institute of Technology:
Blekinge. p. 270.

30. Walderhaug, S., et al. Factors affecting developers' use of MDSD in the Healthcare
Domain: Evaluation from the MPOWER Project. in From code-centric to model-
centric develpoment, Workshop at European Conference on Model-Driven
Architecture. 2008. Berlin, Germany: European Software Institiute.

31. Object Management Group (OMG), MOF 2.0 / XMI Mapping Specification, v2.1.
2005.

32. Selic, B., A Systematic Approach to Domain-Specific Language Design Using UML.
10th IEEE ISORC, 2007. 7.

33. Lagarde, F., et al., Improving uml profile design practices by leveraging conceptual
domain models. Proceedings of the twenty-second IEEE/ACM international
conference on Automated software engineering, 2007: p. 445-448.

34. Stefanov, D.H., Z. Bien, and W.-C. Bang, The smart house for older persons and
persons with physical disabilities: structure, technology arrangements, and
perspectives. IEEE transactions on neural systems and rehabilitation engineering,
2004. 12(2): p. 228-50.

35. Davis, F.D., R.P. Bagozzi, and P.R. Warshaw, User Acceptance of Computer
Technology: A Comparison of Two Theoretical Models. Management Science, 1989.
35(8): p. 982-1003.

36. Fuentes-Fernández, L. and A. Vallecillo-Moreno, An Introduction to UML Profiles.
UML and Model Engineering, 2004. 5(1).

 Page 71 of 87

http://www.ibm.com/developerworks/rational/library/05/419_soa/

D1.1 Overall Architecture

Appendix C MDSD and Interoperability

The following text is from the article:

S. Walderhaug, M. Mikalsen, G. Hartvigsen, E. Stav, J. Aagedal, “Improving systems
interoperability with model-driven software development for healthcare,” Medinfo, vol. 12,
no. Pt 1, 2007, pp. 122-126.

Improving Systems Interoperability with Model-Driven Software
Development for HealthCare

Ståle Walderhauga+b, Marius Mikalsen a, Gunnar Hartvigsen b a, Erlend Stav , Jan
Aagedal a

a SINTEF ICT, Trondheim, Norway
b Medical Informatics and Telemedicine Group, Dept for Computer Science, University of Tromsø,

Tromsø, Norway

C.1 Abstract:
An aging population and an increase in chronically ill patients demand teamwork treatment models. To
support these with information systems, interoperability is a prerequisite. Model-driven software
development (MDSD) with special healthcare extensions can enable reuse of components and improve
conformance to international standards. In this paper, a MDSD HealthCare Framework is proposed
and demonstrated for homecare services. Using the framework, information systems will improve their
conformance to international standards and the interoperability with other systems.

C.2 Introduction
In healthcare, the disease burden is changing from acute to chronic care, 35000000 people died from
chronic diseases in 2005, and 60% of all deaths are due to chronic diseases [1]. New ways of providing
care are being evaluated, based on teamwork treatment – demanding support from interoperable
information systems. Interoperability in healthcare has been identified as an important area of research
and development by many organizations, including the European Union (EU)16, the Object
Management Group (OMG)17 and other national organizations [2]. The ability to exchange information
and share services across departmental, organizational and national borders can reduce the
administrative overhead and costs [3], and as a result improve the effectiveness of healthcare provided.
Consequently, more patients can be treated faster with the same amount of (care) resources. A
sustainable healthcare infrastructure depends upon interoperable health information services [4, 5].
The treatment and management of homecare consumers, typically elderly, chronically ill and cognitive
disabled, require a coordinated effort from healthcare and social welfare services. To effectively
support these care services with information systems, interoperability of core information such as
patient careplan calendar and medication-list is a prerequisite.

16 EU Life sciences, genomics and biotechnology for health website:
http://cordis.europa.eu/lifescihealth/home.html
17 Object Management Group (OMG) website: http://www.omg.org

 Page 72 of 87

http://cordis.europa.eu/lifescihealth/home.html
http://www.omg.org/

D1.1 Overall Architecture

To improve interoperability between systems, the leading standardization bodies in healthcare
information, HL7, CEN TC251 and OpenEHR, have specified standards that address systems
architecture and information exchange. Although these standards have been available to the Health
Information Systems (HIS) vendors for some time, they have not fully adopted them into their
products. Thus, the different HIS are not interoperable, requiring the development of software adapters
to be able to exchange information about the patients. There is an urgent need for a standardized
interface and method to realize this information exchange.
The standardization bodies provide limited tool support to the developers of health information
systems. To incorporate standard healthcare concepts in the systems’ design, an operational software
engineering artefact that provides both semantic and syntactic interoperability functionality [6, 7]
should be available for the system architects and developers [8-10].
In 2002, the Object Management Group (OMG) introduced the Model-Driven Architecture (MDA)
[11], an approach focusing on using models (e.g., UML models [12]) as first-class entities in the
development of software systems. In practice, this means that the models are used directly in the
implementation of an information system, either as system blueprints or as input to code generation
engines that produce executable code. MDA is the most known model-driven software development
(MDSD) approach, and the overall idea is to separate business functions (in Platform Independent
Models - PIM) from its technological implementations (in Platform Specific Models – PSM), enabling
code generation and reuse of components. The overall benefit is improved interoperability and reduced
development time and cost.
Using a MDSD approach in the development of healthcare information system services could facilitate
the use of standards through specification of reusable standards-based PIMs. Advanced UML
mechanisms such as Profiles and Patterns could be used to further extend the expressiveness of the
modeling language and force the use of standardized healthcare concepts. As a result, the developed
systems will increase the level of interoperability, and at the same time development and maintenance
costs will decrease.
With an aging population and a rapidly increasing number of chronically ill patients [1], the need for
teamwork treatment is crucial. Healthcare Information Systems (HIS) can no longer be seen as
standalone systems, but need to interoperate in a health network [10]. This leads to the problem
statement: How can health information systems development be improved to ensure that systems
involved in a homecare teamwork treatment infrastructure can share information in an effective and
sustainable manner?
This paper proposes a model-driven software development framework with standards-based healthcare
extensions as a tool to achieve interoperability between HIS. The healthcare focus is on homecare
services although the healthcare standards discussed have general applicability. The paper concludes
that MDSD with the appropriate healthcare information extensions can improve software’s
conformance to standards and thus also the ability for caregivers to share information in teamwork
treatment.
Following next is an overview of the challenges that are associated with developing such a MDSD
Healthcare framework, both from a software engineering and healthcare viewpoint. Then the
framework is presented along with an example from the homecare domain, before the paper concludes
with a discussion of the validity of our results and directions for future work.

C.3 Immature MDSD tools and need for evaluations
In a keynote talk at the 2006 ECMDA-FA conference in Bilbao (Spain), Bran Selic (IBM) advertised
for rigorous scientific studies that investigate how MDSD can improve the development process18.
Recently, the ModelWare project19 conducted five different scientific MDSD evaluations. A summary
of the evaluations is presented in [13] and concludes that by applying MDSD, a productivity gain of
20% can be expected and the quality of the software produced would increase.
Despite these and other reports, there is a considerable skepticism in the software engineering
community about the performance and usability of MDSD. The skepticism is based on three main
points: 1) the UML is too generic and is conceptually too far from implementation languages making it

18 ECMDA website: http://www.ecmda-fa.org/
19 MODELWare (FP6-IP 511731) project website: http://www.modelware-ist.org

 Page 73 of 87

http://www.ecmda-fa.org/
http://www.modelware-ist.org/

D1.1 Overall Architecture

difficult to generate efficient and fully executable code [14, 15], 2) The maturity of MDSD tools:
transformation tools are not complete enough to provide return of the investment put into developing
reusable UML models. E.g., the Query/View/Transformation (QVT) standard [16] by OMG does not
have good tool support and 3) standards are used in different versions, some of which are not
interoperable.

C.4 Many Systems, Many Standards
The use of information standards to improve interoperability between information systems in the
healthcare domain is not straight-forward. In a single healthcare organization, there is a plethora of
information systems, each based on one or more information standards. In the context of systems
development, sharing of information and services between these systems need to address the following
issues: 1) Many systems (such as patient administrative systems) are dated back to the late eighties,
long before the specification of today’s information standards, 2) Department specific systems
developed to serve one specific purpose do often not use international standards nor follow best-
practice in systems architecture, 3) The information systems themselves and the information standards
used are continuously being upgraded [7].

C.5 A MDSD Framework for HealthCare
The work presented in this paper build upon three assertions presented in the following.
Assertion 1: Model-Driven Software Development with healthcare information standards support will
improve interoperability between health information systems (compared to the traditional way of
developing systems)
UML allows for extensions through the use of UML Profiles. A profile defines stereotypes, tagged
values and constraints that can be assigned to modeling elements in the design process. The main
purpose of a profile is to extend UML’s expressiveness for a certain domain, e.g. healthcare. By
providing healthcare specific UML profiles and patterns as a part of a MDSD framework for
healthcare, concepts defined in international healthcare information standards can be automatically
built into the information systems. A healthcare profile can be used by transformation templates and
code generators to explicitly implement attributes, relationships, operations and objects that provide
interoperability services.
Assertion 2: Healthcare Information Standards are appropriate as reusable model-driven development
artefacts.
Standards from HL7, CEN TC251 and OpenEHR make use of UML class diagrams to specify concepts
and relationships. However, parts of the semantics are described textually as constraints-comments to
the formal UML models. To be able to correctly incorporate these standards into model-driven
development artefacts such as UML Profiles, the complete semantics of the standards must be possible
to represent formally. The correctness and reusability of the models created with the UML profile will
depend on the mapping between the standard and the UML profile artefacts.
Assertion 3: Healthcare information services in the homecare domain can be reused across
organizations.
The usefulness of a MDSD Healthcare framework for the development of interoperable homecare
services will depend on the ability to define functional and coherent information services in the
domain. The services need to be reusable beyond departmental and organizational borders, preferably
also national borders as some healthcare institutions have rehabilitation and treatment centers abroad,
often collaborating with the local healthcare services.

C.6 Results
Using a model-driven approach such as the MDSD Healthcare Framework enables rapid development
of interoperable healthcare information systems. The framework includes a set of UML profiles,
models and experience reports from the homecare domain, but with generic healthcare service
applicability.

C.6.1 Example of MDSD Healthcare Framework in Homecare
A trivial example is provided to demonstrate how a UML Profile for healthcare can be used in the
development process to achieve interoperability between information systems.

 Page 74 of 87

D1.1 Overall Architecture

The example service is a CarePlan service where a HomeCare Center System and a General
Practitioner (GP) EHR HomeCare extension can access and update the homecare patient’s careplan.
Both systems will need to provide a defined interface for information exchange based on the same
standard. A small subset of the “CarePlan” concept in the Continuity of Care (CONTSYS) [17]
standard is used for demonstration (Figure 38). A “CarePlan” is applied by one or more HealthCare
Professional and addresses one or more health issues that the Subject of Care has (relation not shown).

class CONTSYS CarePlan

CarePlan

HealthIssueHealthCareProfessional

+applies 0..*+is applied by
1..*

+is addressed by
0..* +addresses

1..*

Figure 38: A subset of the CONTSYS CarePlan concept
The goal is to develop Java based (sub-) systems that allow exchange of careplan information for the
homecare patient according to the CONTSYS standard.

C.6.2 A Simple UML Profile for HomeCare
Based on the CONTSYS standard, the following UML extensions are specified: 1) UML Class
Stereotype: SubjectOfCare: The person receiving treatment, 2) UML Class Stereotype: CarePlan: The
treatment plan for one or more health issues (problem), 3)UML Class Stereotype:
HealthCareProfessional: A caregiver entitled to provide care, 4) UML Association Stereotype:
HealthCareProfessional_isResponsible: The healthcare professional (source element) is responsible for
the target element and 5) UML Association Stereotype: SubjecfOfCare_Owns: Subject of Care
(source) has owner right of the target element.
Two tagged values are defined: 1) Boolean: isShared: when used with a CarePlan, stating whether the
careplan is shared or not and 2) Boolean: isOrganDonor: used with a SubjectOfCare to state if the
person is organ donor or not.

C.6.3 The Healthcare Information Systems
The two systems are being developed independently by different vendors using the same CONTSYS-
based UML profile. The Care Center system platform independent model (PIM) shown in Figure 39
shows that the HomeCarePlan (stereotyped CarePlan) is related to the HomeCarePatient (owned by),
the Doctor (under responsibility of) and the Visiting Nurse. All classes are stereotyped according to
CONTSYS. As a result, the HomeCarePatient has a tagged value for “isOrganDonor” and the
HomeCarePlan has an “isShared” tag.

class Care Center System

«SubjectOfCare»
HomeCarePatient

«CarePlan»
HomeCarePlan«HealthCareProfessional»

VisitingNurse

- FirstName: String
- LastName: String
- PersonID: long

tags
isOrganDonor = true

tags
isShared = True

- NurseID: long

«SubjectOfCare_Owns»

«HealthCareProfessional_Responsible»

«HealthCareProfessional»
Doctor

- DoctorID: long

Figure 39: The Care Center System PIM
The PIM for the GP EHR Homecare extension system (Figure 40) shows that the TreatmentPlan
(“CarePlan”) elements are related to one or more patient problems (“HealthIssue”) according to a
problem-oriented EHR [18]. This can be used to filter out treatment activities that are not related to the
coordinated care of a homecare patient.

 Page 75 of 87

D1.1 Overall Architecture

class GP HomeCare Extension

«SubjectOfCare»
Patient

tags
isOrganDonor = false

«CarePlan»
TreatmentPlan

tags
isShared = false

«HealthIssue»
Problem

- ProblemDescription: String
- Diagnoses: String

«HealthCareProfessional»
GeneralPractitioner

«HealthCareProfessional_Responsible»

«HealthCareProfessional_Responsible»

1

«SubjectOfCare_Owns»

0..*

1..* 1..*

Figure 40: The GP EHR Homecare Extension PIM
The two PIMs can be transformed to Java Platform Specific Models (PSM) using a CONTSYS-based
transformation script for Java. This script utilizes the stereotypes and tagged values in the
transformation process to add attributes and operations to ensure that the required interoperability
mechanisms are implemented. In this trivial example, only set and get operations for the tagged values
and careplan elements are created. The Java Model for the Care Center system (Figure 41) and the GP
EHR Homecare extension (Figure 42) show that during the transformation process, three operations
have been created on the CarePlan-stereotyped classes. These operations, stereotyped with “CarePlan”,
enables exchange of CarePlan elements and retrieval of all HealthCare Professionals that are related to
the CarePlan.

class Jav a Model

«HealthCareProfessional»
Doctor

«CarePlan»
HomeCarePlan

«HealthCareProfessional»
VisitingNurse«property get»

+ getDoctor() : Doctor
+ getVisitingNurse() : VisitingNurse - NurseID: long

- DoctorID: long

«property get»
+ getHomeCarePlan() : HomeCarePlan

«property set»
+ setHomeCarePlan(HomeCarePlan) : void

«SubjectOfCare»
HomeCarePatient

- FirstName: String
- LastName: String
- PersonID: long

«SubjectOfCare»
+ OrganDonor: boolean = true

«property get»
+ getHomeCarePlan() : HomeCarePlan
+ isOrganDonor() : boolean

«property set»
+ setHomeCarePlan(HomeCarePlan) : void
+ setOrganDonor(boolean) : void

«property set»
+ setDoctor(Doctor) : void
+ setVisitingNurse(VisitingNurse) : void

«property get»
+ getHomeCarePlan() : HomeCarePlan

«CarePlan»
+ addCarePlanElement(String) : void
+ getCarePlanElement(long) : String
+ getHealthCareProfessionals() : String[]

«property set»
+ setHomeCarePlan(HomeCarePlan) : void

«SubjectOfCare_Owns»

«HealthCareProfessional_Responsible»

Figure 41: Java PSM for the Care Center System

 Page 76 of 87

D1.1 Overall Architecture

class Java Model

«HealthCareProfessional»
GeneralPractitioner

«property get»
+ getTreatmentPlan() : TreatmentPlan
+ getPatient() : Patient

«property set»
+ setTreatmentPlan(TreatmentPlan) : void
+ setPatient(Patient) : void

«SubjectOfCare»
Patient

«property get»
+ getProblem() : java.uti l.ArrayList
+ getTreatmentPlan() : TreatmentPlan

«property set»
+ setProblem(java.uti l.ArrayList) : void
+ setTreatmentPlan(TreatmentPlan) : void

«HealthIssue»
Problem

«CarePlan»
TreatmentPlan

«property get»
+ getProblem() : java.util .ArrayList
+ getGeneralPractitioner() : GeneralPractitioner

«property set»
+ setProblem(java.util .ArrayList) : void
+ setGeneralPractitioner(GeneralPractitioner) : void

- ProblemDescription: String
- Diagnoses: String

«property get»
+ getTreatmentPlan() : java.uti l.ArrayList

«property set»
+ setTreatmentPlan(java.util .ArrayList) : void

«CarePlan»
+ getCarePlanElement(long) : string
+ addCarePlanElement(String) : void
+ getHealthCareProfessionals() : String[]

1..*
1..*

«SubjectOfCare_Owns»

«HealthCareProfessional_Responsible»

1
0..*

«HealthCareProfessional_Responsible»

Figure 42: Java PSM for the GP EHR HomeCare Extension
From these Java PSMs, code can be generated using a standard code generation tool based on e.g. QVT
[16].
To summarize: using the CONTSYS UML Profile in the design and development of the careplan
service in the Care Center and GP EHR systems ensured that the services are conform to the standard
and thus can exchange information correctly.

C.7 Discussion
The MDSD Healthcare framework proposed in this paper addresses the need to make information
systems in the healthcare domain interoperable and sustainable. To achieve this, the framework
provides tools and reusable components that incorporate international information standards into the
information system design.
The effect this will have for the future healthcare information systems relies on the three assertions
described in the first part: 1) the quality of artefacts produced from the framework, 2) the ability to map
information standards to useful UML profiles and 3) the identification of reusable services.
The quality of the software produced by the framework will depend on the tool support and the
developer. The main improvement compared to traditional software development lies in the built-in
healthcare tool support, where use of healthcare UML profiles, reuse of existing platform independent
models and use of code generation will reduce roundtrip time and improve the quality of the code.
The example showed a simple careplan service where a concept from CONTSYS was applied. More
complex services will need more concepts, maybe from more than one standard. The MDSD
framework will provide UML Profile support for the most used healthcare standards and patterns for
the most recurring concepts. A modular design, in line with Beale’s archetype concept (7), provides
scalability and maintainability of the models as the standards are updated or extended. The Archetypes
being specified in both CEN TC251 EN13606 [19] and OpenEHR, can be used by the MDSD
framework as reusable models and patterns. An archetype is a model of a healthcare concept, and is
represented formally using UML.
The specification of reusable services in the healthcare domain is in accordance with Service-Oriented
Architecture (SOA) [20]. Many healthcare organizations are adapting SOA as the core enterprise
architecture, using a message-oriented middleware with HL7 to exchange information between
systems. The process of transitioning to a SOA architecture is expensive, but a fully interoperable
healthcare infrastructure would reduce coordination expenses dramatically [3]. Homecare services are
likely to be a part of this enterprise service architecture connected through a health network [5]. SOA-
based homecare system services can enable independent development and deployment of new patient
monitoring and surveillance services in the health network. A SOA based infrastructure will allow
sustainable development of healthcare services.

 Page 77 of 87

D1.1 Overall Architecture

A critical aspect when introducing new development tools and techniques is to evaluate its effect.
Proper scientific methods must be applied to achieve rigor. A complete medical informatics solution
should not only evaluate the artefacts isolated, but also study their effect in a real environment [21].
The MDSD HealthCare Framework will be subject for two scientific experiments with real users in the
M-Power project20.

C.8 Future work
The framework proposed in this paper is a part of the work being done within the M-Power and
Linkcare projects21. These projects will identify and develop reusable homecare services for the
provision and coordination of homecare services. Using the first version of the HealthCare MDSD
framework, some of these services will be evaluated in 2007 and 2008.

C.9 Conclusion
With an aging population and dramatic increase in chronic diseases [1], systems interoperability in the
healthcare domain is of utmost importance in order to maintain the service level of today and support
teamwork treatment. One way to improve interoperability is to ensure the healthcare information
systems’ conformance to international standards.
The Healthcare MDSD framework will incorporate standards into the development process of
information systems, and as a result improve interoperability. The MDSD framework will be evaluated
in two experiments in 2007 and 2008 as a part of the LinkCare and M-Power projects. These projects
have a strong focus on treatment and management services for chronically ill, elderly and cognitive
disabled. This will ensure the framework’s relevance for the domain.

C.10 References
[1] World Health Organization. Preventing CHRONIC DISEASES -a vital investment: World Health

Organization; 2005.
[2] Norwegian Ministry of Social Affairs, Norwegian Ministry of Health. Te@mwork 2007 -

Electronic Interaction in the Health and Social Sector: Directorate for Health and Social Affairs;
2004.

[3] Walker J, Pan E, Johnston D, Adler-Milstein J, Bates W. D, Middleton B. The Value of Health
Care Information Exchange and Interoperability. Health Tracking. 2005 January;5(10).

[4] Brailer D. Interoperability: the key to the future health care system. Health Affairs vol:Suppl Web
Excl-19 2005.

[5] Beyer M, Kuhn KA, Meiler C, Jablonski S, Lenz R. Towards a flexible, process-oriented IT
architecture for an integrated healthcare network. Proc. of the 2004 ACM symposium on Applied
Computing. Nicosia, Cyprus: ACM Press; 2004.

[6] Park J. Information systems interoperability: What lies beneath? ACM transactions on information
systems. 2004;22(4):595.

[7] Beale T. Archetypes: Constraint-based Domain Models for Future-Proof Information Systems.
OOPSLA 2002 Workshop on behavioural semantics; 2002; Portland, Oregon, USA; 2002.

[8] Kuhn KA, Lenz R, Elstner T, Siegele H, Moll R. Experiences with a generator tool for building
clinical application modules. Methods of information in medicine. 2003;42(1):37-44.

[9] Lenz R, Beyer M, Kuhn KA. Semantic integration in healthcare networks. International journal of
medical informatics. 2007 Feb-Mar;76(2-3):201-7.

[10]Lenz R, Kuhn KA. Towards a continuous evolution and adaptation of information systems in
healthcare. International journal of medical informatics. 2004;73(1):75-89.

[11]Miller J, Mukerji J. MDA Guide Version 1.0.1: Object Management Group (OMG); 2003 2003-06-
13. Report No.: omg/2003-06-01.

20 MPOWER homepage: http://www.mpower-project.eu
21 LinkCare homepage: http://www.linkcare-bcn.org

 Page 78 of 87

http://www.mpower-project.eu/
http://www.linkcare-bcn.org/

D1.1 Overall Architecture

[12]Object Management Group (OMG). UML 2.0 Superstructure FTF Rose model containing the
UML 2 metamodel: Object Management Group (OMG); 2005.

[13]Hartman A. Industrial ROI, Assessment, and Feedback - Master Document: IBM Haifa Research
Lab; 2006 September 15, 2006. Report No.: D5.3-1.

[14]Fowler M. UML Modes. 2003 [cited 2006 November 14]; Martin Fowler's homepage]. Available
from: http://www.martinfowler.com/bliki/UmlMode.html

[15]Mellor SJ. Executable UML: A Foundation for Model-Driven Architecture; 2002.
[16]Object Management Group (OMG). MOF QVT Final Adopted Specification: Object Management

Group (OMG); 2005.
[17]CEN TC251. EN 13940-1: Health Informatics - System of Concepts to Support Continuity of Care

- Part 1: Basic Concepts: European Committee for Standardization; 2006 September 26.
[18]van Bemmel JH, Musen MA. Handbook of medical informatics. 1 ed: Springer Verlag; 2002.
[19]CEN TC251. EN 13606-1-4: Health informatics - Electronic healthcare record communication Part

1-4: European Committee for Standardization; 2000 May.
[20]OASIS Open. Reference Model for Service Oriented Architecture 1.0: OASIS Open; 2006 August

2. Report No.: soa-rm-cs.
[21]Friedman CP. Where's the science in medical informatics? Journal of the American Medical

Informatics Association. 1995;2(1):65-7.
Address for correspondence

Ståle Walderhaug, University of Tromsø, Department of Computer Science, Medical Informatics and
Telemedicine group, 9037 TROMSØ, NORWAY. Telephone: +47 90766069, Fax: +47 77644580, email:
stale.walderhaug@sintef.no

 Page 79 of 87

mailto:stale.walderhaug@sintef.no

D1.1 Overall Architecture

Appendix D Reusable Actors and Services

This appendix is from the paper presented at Medical Informatics Europe 2008:

S. Walderhaug, E. Stav, and M. Mikalsen. “Improving systems interoperability with model-
driven software development for healthcare,” Medinfo, vol. 12, no. Pt 1, 2007, pp. 122-126.

Reusing Models of Actors and Services in Smart
Homecare to Improve Sustainability

− Ståle Walderhaug a+b, Erlend Stava and Marius Mikalsena,

a SINTEF ICT, Trondheim, Norway
b Department of Computer Science, University of Tromsø, Norway

Abstract: Industrial countries are faced with a growing elderly population. Homecare systems with
assistive smart house technology enable elderly to live independently at home. Development of such
smart home care systems is complex and expensive and there is no common reference model that can
facilitate service reuse. This paper proposes reusable actor and service models based on a model-
driven development process where end user organizations and domain healthcare experts from four
European countries have been involved. The models, specified using UML can be reused actively as
assets in the system design and development process and can reduce development costs, and improve
interoperability and sustainability of systems. The models are being evaluated in the European IST
project MPOWER.

Keywords: Homecare, Smart house, Service Oriented Architecture, System architecture, UML,
Model-driven software development, standardisation, HL7

D.1 Introduction
Home care is a concept where new technological solutions allow the elderly to live independently at
home. The consumers, typically elderly, chronically ill and cognitive disabled are empowered by state-
of the art information and technology in their homes to achieve the overall goal of aging in place[49-
51].

The technological advances are being deployed into the homecare domain, and many projects are
working on smart house technology [46, 52] for homecare. This concept needs, in addition to technical
devices, to be supported by a team of actors including family members, healthcare personnel and non-
healthcare services organizations. A smart homecare system is both complex and expensive to build.
Efficient development of complex systems should seek to reuse components and services through
abstraction to “manage complexity and guarantee continuity”[53]. Krueger states that “in order to
reuse artefacts, software developers must either be familiar with the abstractions a priori or must take
time to study and understand the abstractions.”[54]. The importance of understanding the domain
concepts is emphasized by Beyer et al in [55] where they state that “to reduce the effort for system
evolution it is highly desirable to incorporate generic components, that can be reused in different
contexts”.

Lenz, Beyer and Kuhn elaborate on this in [56] and argues for a separation of domain concepts and
system implementation: ”in order to cope with domain evolution, modelling of domain concepts should
be separated from IT system implementation. IT systems should be implemented by IT experts and
medical knowledge should be modelled and maintained by domain experts.” A reusable reference
model for smart homecare can form the basis for more efficient development of smart homecare
systems and reuse of its services[19, 55, 57, 58]. This article presents the work done in the MPOWER
project [59] where a model of the core business process actors and services in smart homecare systems
has been specified. Two research questions are addressed:

• Which actors (persons and systems) are involved in the teamwork treatment of smart
homecare service consumers?

• Which information services are needed to support the (treatment) processes?

 Page 80 of 87

D1.1 Overall Architecture

The focus of the work is on actors and information service support for elderly and cognitive disabled.
The project result is a formal representation of actors and services that enable service reuse and
increase the understanding of actor-service dependencies.

The remainder of the paper is organized as follows: First the methods and materials for specifying
the actor and service models are described. Next, the core of these models is presented before the
implications they may have on the development of sustainable healthcare systems are discussed.

D.2 Methods and Materials
Domain experts and user groups for elderly and cognitive disabled in four European countries were
involved in the requirements process; Austria, Poland, the Netherlands and Norway [60]. The process
produced the “User Scenario Specification” describing the problems experienced by the target groups
and the planned assistive smart homecare services. Figure 43 shows the overall iterative approach for
the work.

Technical work

Joint healthcare and technical workHealthcare work

Iteration start

User Workshop

Expert Interview

User
Questionnaire

Litterature Study

User Scenarios Specification

«WebService»
Reusable Services

UML UseCase Modelling

ActorModel

ServiceModel

Model Transformation

Iteration
end

Application developmentApplication
Evaluation

Application

Evaluation report

UseCase Model

Service Specification

use patterns
«flow»

«flow»

«flow»

«flow»

«flow»

«flow»

«trace»

«flow»

«flow»

«trace»

«trace»

«trace»

service descriptions

«flow»

WSDL

«flow»

cre ate

«flow»

eval uate

«flow»

«trace»

«flow»

«flow»

«flow»

«flow»

«trace»

Figure 43: The iterative model-driven development process used to identify actors and services.
Artefacts are shown as rectangles whereas the activities are denoted as rectangles with rounded
corners.
This user requirements document was used as the basis for UML [11] UseCase Modelling activity that
produced the UML Actor and UseCase Models. The modelling work was a joint effort by healthcare
personnel and system architects, as recommended by Lenz et al in [56]. The Service Specification
activity uses the Actor and UseCase models as input to create the Service Model which is used in the
Model Transformation [10, 14, 61] activity for creating Reusable Services (Web Services). Finally, the
Reusable Services are used by application developers to implement applications that will be evaluated
by healthcare personnel. The evaluation report (from Application Evaluation activity) is used as input
for the succeeding iteration. The bold arrows in Figure 43 highlight traceability links between artefacts
[62].

The Use Case Model, Actor Model and Service Model were developed using Unified Modelling
Language (UML) with the IBM Profiles for Software Services [21] according to Service Oriented
Architecture (SOA) [1]concepts. The services in the Service Model were identified according to best
practice SOA in general [1], and for healthcare especially [7, 41].

D.3 Results
In this paper, only a selection of the most important elements from these models is presented in detail.
Full specifications are accessible on the MPOWER Website [59]. The use case and service modelling
activities resulted in three UML models: the Actor Model, the Service Model, and the Use Case model
that relates the two first.

 Page 81 of 87

D1.1 Overall Architecture

+ Appointed Homecare
Service Provider
+ Appointed Homecare
Service Provider

HealthOrganisationRole

+ Appointed Homecare
Service Provider

Healthcare Professional Role

+ Family Doctor
+ Visting Nurse

Person Role

+ Friend
+ Subject of Care
+ Care Service Coordinator
+ Guardian
+ Partner

Stakeholder - Healthcare Professional

+ HealthCareProfessional
+ Mecial Specialist
+ Medical Doctor
+ Nurse
+ Occupational Therapist
+ Physio Therapist
+ Specialist nurse

+ Athletic Club
+ Building Manager
+ Call Center
+ Day Center
+ Delivery Service
+ Fire Department
+ HealthCare Organization
+ Healthcare Supporting
Organisation
+ Healthcare Supporting
Organisation
+ Home Service Providers
+ HomeCare Service Provider
+ Hospital
+ Local Care Center
+ Memory Clinic
+ Other Organisation
+ School
+ Voluntary Organization

Stakeholder - Organization

+ Athletic Club
+ Building Manager
+ Call Center
+ Day Center
+ Delivery Service
+ Fire Department
+ HealthCare Organization
+ Healthcare Supporting
Organisation
+ Home Service Providers
+ HomeCare Service Provider
+ Hospital
+ Local Care Center
+ Memory Clinic
+ Other Organisation
+ School
+ Voluntary Organization

Stakeholders - Other

+ Care Center Staff
+ Daughter
+ Elderly Consultant
+ Father
+ Friend
+ GrandChild
+ Home Helper
+ Husband
+ Mother
+ Other Carers
+ Other Professional
+ Relative
+ Son
+ Subject Of Care
+ Technical Supervisor
+ Wife

System - Assistiv e Dev ices

+ Access Key
+ Assistive Devices
+ Bracelet with reminder service
+ Electronic List
+ GPS System
+ Light with Voice Command
+ Location / postioning Sensor
+ Shower System

System - Assis tiv e Serv ices

+ Assistive Services
+ eBanking
+ Online Shopping List
+ Residence
+ Shopping List

+ Burglar Alarm
+ Devices for automation and control of
home environment
+ Devices for automation and control of
home environment
+ Door Control System
+ Heating Control System
+ Light Control System
+ Motion Sensor System
+ Oven Control System
+ Personal Emergency Safety System
+ Smoke detection System
+ WaterFlow System

System - Automation a nd Control

+ Burglar Alarm
+ Devices for automation and control
of home environment
+ Door Control System
+ Heating Control System
+ Light Control System
+ Motion Sensor System
+ Oven Control System
+ Personal Emergency Safety System
+ Smoke detection System
+ WaterFlow System

+ Calendar System
+ Database on special Health Server
+ Education System
+ Electronic Patient Record (EPR)
+ Healthcare Information System
+ HomeCare System
+ Individual Plan
+ Medication Plan
+ Patient Memo System
+ Procedure / Guide System

System - Health Information System

+ Calendar System
+ Database on special Health Server
+ Education System
+ Electronic Patient Record (EPR)
+ Healthcare Information System
+ HomeCare System
+ Individual Plan
+ Medication Plan
+ Patient Memo System
+ Procedure / Guide System

+ Blood Pressure Sensor
+ Devices for Information Exchange
+ Glucose Sensor
+ Health Care Device
+ Intranet Facil i ty
+ Leisure Devices
+ Television Screen
+ VideoTeleConferencing System (VTC)

System - Healthcare, Information Exchange and Leisure Dev ices

+ Blood Pressure Sensor
+ Devices for Information Exchange
+ Glucose Sensor
+ Health Care Device
+ Intranet Facil i ty
+ Leisure Devices
+ Television Screen
+ VideoTeleConferencing System (VTC)

«use»

«use»

«use»
«use»

Figure 44: The ActorModel showing the elements of the system, stakeholder and role parts.
The Actor Model (Figure 44) has three main parts: System (light grey), Stakeholders (white) and
Roles (dark grey). The stakeholders can have different roles as shown in Figure 45. The roles that the
stakeholders can take are modelled as a dependency link, e.g., only a Nurse or a Specialist Nurse can
have the role as a Visiting Nurse. All Healthcare Professionals can be a patient themselves (role
Subject of Care).

HealthCareProfessional Medical DoctorNurse

Physio TherapistOccupationa l Therapist

Family Doctor

(from Healthcare Professional Role)

Visting Nurse

(from Healthcare Professional Role)

Care Serv ice Coordinator

(from Person Role)

Guardian

(from Person Role)

Partner

(from Person Role)

Specialist nurse Mecial Specialist

Subject of Care

(from Person Role)

«healthcare_professional_role»

«healthcare_professional_role»

«person_role» «person_role»
«person_role»

person _role

Figure 45: The relationships between healthcare professional actors and roles as defined in the
ActorModel
The UseCase model defines activities that the actors (and roles) participate in. These activities are the
link to the services in the ServiceModel. Figure 46 shows a use case diagram for calendar
management activities involving systems, stakeholders and roles.

Add Calendar Ev ent

Calendar System

(from System - Health Information System)(from Notification)

Remind about
Calendar Ev ent

Configure Calendar
Settings

Define (add) daily
activ ites in system

Resolv e calendar
conflict

Send calendar ev ent to
user

HomeCare System

(from System - Health Information System)

Guardian

(from Person Role)

Partner

(from Person Role)

Subject of Care

(from Person Role)

Appointed Homecare
Serv ice Prov ider

(from HealthOrganisationRole)

is subject for
«include»

Figure 46: Actors, Roles and Use cases in the usecase diagram for Calendar Management
services
From the scenarios and use cases five categories of services were specified (Figure 47) using the
service identification principles described in [41].

 Page 82 of 87

D1.1 Overall Architecture

Communication Serv ices

+ Alarming
+ data / info transfer
+ ExternalNotification
+ Messaging
+ Synchronization

Management Serv ices

+ ActorManagement
+ ContextManagement
+ ServiceManagement

Security Serv ices

+ encryption
+ User Management
+ Role Management
+ Token Management
+ Access Management
+ AccessControl
+ Audit
+ Public Key Infrastructure
+ Secure Communication
+ Secure Storage

Information Serv ices

+ Accessibil ity
+ Calendar
+ IndividualPlan
+ Interaction
+ Knowledge
+ Medication

Sensor Serv ices

+ CameraManagement
+ Device Management
+ DoorManagement
+ FlowManagement
+ Location
+ Monitoring
+ OvenManagement
+ PulseOximeterManagement
+ TemperatureControl

Figure 47: The service categories in the ServiceModel. The elements of each category are
resuable services

D.4 Discussion
The Actor Model specified from the User Services Specification includes formal actor and role
specifications in UML that allows for reuse across functional domains such as medication management
and home automation services. A common and formally specified Actor Model means that 1) Actor-
System (service) interaction can be precisely specified, 2) access control for services can be derived
from use cases with actor interaction, 3) Actor-System dependencies can be traced through trace links,
and 4) Systems and services can be compared to each other.

The elements of the Actor Model were agreed by all four countries participating in the
specification process, and it is conform to the CEN TC251 CONTSYS [26] standard and compatible
with those actors described in [63] and [46]. An important finding when modelling the Actor Model
was the feasibility of using roles in use case modelling. In many cases, it is not the actor itself that
interacts with the system, rather an actor taking a certain role. Using this concept, the constraints will
be put on which actor that can take a role instead of modelling use cases for different actors in different
contexts. Figure 46 shows an example where the Appointed Homecare Service Provider, Partner and
Guardian roles are used to interact with the add calendar event activity.

The services identified for the Service Model are being implemented and used in two proof-of-
concept applications in the MPOWER project [59]. The applications communicate with the services
through HL7 messages, and all underlying complexity is handled by the services. The results from
these developments will evaluate the services’ reusability in the domain. Preliminary development
results show that:
• Applications can be developed more rapidly by reusing high-quality services [55].
• Functionality can be reused across applications and organisations and nations, e.g., sending SMS,

PKI, calendar management, medication list management.
• Clearly defined actors will improve the validity of the system services being developed and

improve sustainability[53, 64]
• The gap between business processes and supporting information systems can be shortened by

applying the Service Oriented Architecture concepts [1, 7, 19, 41]
• Aligning service and actor descriptions with national and international standards will promote

standardisation and facilitate reuse of services and components across organisations and nations,
thus improving interoperability[65]

Reuse of software and design is not trivial. Krüger states that “for a software reuse technique to be
effective, it must reduce the cognitive distance between the initial concept of a system and its final
executable implementation.” The Actor and Service models presented herein are the results of a formal
process to reduce this distance.

The results presented herein are generalisations, and may not be directly applicable to all domains
without prior local adaptations. The actor and service models can serve as reference models from
which nation and organization specific models can be developed in accordance with the prevailing
ways of organizing care and legislations. The specification of reference models must be supported by
standards developing organisations such as CEN TC251 and HL7 [66]. The proposed models being
implemented and evaluated in the MPOWER Project [59], and will be presented for the HSSP project
[67] and national standardisation bodies in Europe.

D.5 References
1. Erl, T., Service-Oriented Architecture Concepts, Technology, and Design. The

Prentice Hall Service-Oriented Computing Series ed. T. Erl. 2006, Crawfordswille,
Indiana, USA: Prentice Hall.

 Page 83 of 87

D1.1 Overall Architecture

2. OASIS Open, Reference Model for Service Oriented Architecture 1.0, C. Matthew
MacKenzie, et al., Editors. 2006, OASIS Open.

3. University of Cyprus (UCY), MPOWER D2.1 Relevant Standards and Sensors. 2007,
MPOWER Consortium, FP6 STREP 034707.

4. Austrian Research Center (ARC), MPOWER D4.1 Interoperability Standards and
Technology Overview. 2007, MPOWER Consortium, FP6 STREP 034707.

5. University of Cyprus (UCY), MPOWER D5.1 Security Standards and Technology
Overview. 2007, MPOWER Consortium, FP6 STREP 034707.

6. Ali Arsanjani. Service-oriented modeling and architecture: How to identify, specify,
and realize services for your SOA. 2004 [cited 2007 November 2]; Available from:
http://www-128.ibm.com/developerworks/webservices/library/ws-soa-design1/.

7. Honey, A., et al., SOA4HL7 Architecture Document, A. Dutta, Editor. 2006, Health
Level Seven. p. 76.

8. Stahl, T. and M. Völter, Model-driven software development: technology,
engineering, management. 2006, Chichester: Wiley. XVI, 428 s.

9. Object Management Group (OMG), MDA Guide Version 1.0.1, J. Miller and J.
Mukerji, Editors. 2003, Object Management Group. p. 1-62.

10. Miller, J. and J. Mukerji, MDA Guide Version 1.0.1, J. Miller and J. Mukerji, Editors.
2003, Object Management Group (OMG). p. 1-62.

11. Object Management Group (OMG), UML 2.0 Superstructure FTF Rose model
containing the UML 2 metamodel. 2005, Object Management Group (OMG).

12. Hartman, A., Industrial ROI, Assessment, and Feedback - Master Document. 2006,
IBM Haifa Research Lab. p. 24.

13. Guttman, M. and J. Parodi, REAL-LIFE MDA: Solving business problems with model
driven architecture. 2006: Morgan Kaufmann Publishers Inc, San Francisco, CA,
USA. 200.

14. Mellor, S.J., MDA Distilled: Principles of Model-Driven Architecture. 2004.
15. Blobel, B.B. and P.P. Pharow, A model-driven approach for the german health

telematics architectural framework and the related security infrastructure. Studies in
health technology and informatics, 2005. 116: p. 391-6.

16. Rubin, K.S., T. Beale, and B. Blobel, Modeling for Health Care, in Person-Centered
Health Records. 2005, Springer New York: New York. p. 125-146.

17. Jones, V., A. Rensink, and E. Brinksma. Modelling mobile health systems: an
application of augmented MDA for the extended healthcare enterprise. 2005.

18. Raistrick, C., Applying MDA and UML in the Development of a Healthcare System,
in UML Modeling Languages and Applications. 2005, Springer Berlin / Heidelberg.
p. 203-218.

19. Kawamoto, K. and D.F. Lobach, Proposal for Fulfilling Strategic Objectives of the
U.S. Roadmap for National Action on Decision Support through a Service-oriented
Architecture Leveraging HL7 Services. Journal of the American Medical Informatics
Association, 2007. 14(2): p. 146-155.

20. Omar, W.M., E-health support services based on service-oriented architecture. IT
professional, 2006. 8(2): p. 35.

21. Johnston, S. UML 2.0 Profile for Software Services. 2005 [cited 2007 June 15];
Available from: http://www.ibm.com/developerworks/rational/library/05/419_soa/.

22. Rosen, M., MDA, SOA, and Technology Convergence, in The MDA Journal Straight
from the Masters, David S. Frankel and John Parodi, Editors. 2004, Meghan-Kiffer
Press: Tampa, Florida, USA. p. 62-79.

23. Object Management Group (OMG), Object Constraint Language (OCL), Version 2.0.
2006, Object Management Group. p. 1-232.

24. Warmer, J.B., "Object Constraint Language, The: Getting Your Models Ready for
MDA, Second Edition". 2003.

25. Gamma, E., Design patterns: elements of reusable object-oriented software. 1995.

 Page 84 of 87

http://www-128.ibm.com/developerworks/webservices/library/ws-soa-design1/
http://www.ibm.com/developerworks/rational/library/05/419_soa/

D1.1 Overall Architecture

26. CEN TC251, EN 13940-1: Health Informatics - System of Concepts to Support
Continuity of Care - Part 1: Basic Consepts. 2006, European Committee for
Standardization. p. 105.

27. Mikalsen, M., et al. Linkcare - interoperability accross levels and profession. in
MEDINFO 2007. Brisbane, Australia: IOS Press.

28. HL7. HL7 Reference Information Model 2.16. 2007 [cited 2007 June 22]; Available
from: http://www.hl7.org/Library/data-model/RIM/modelpage_mem.htm.

29. World Wide Web Consortium (W3C), Web Services Architecture, D. Booth, et al.,
Editors. 2004, W3C.

30. SUN Microsystems. Java Platform, Enterprise Edition 5 (Java EE 5). 2007 [cited
2007 June 22]; Available from: http://java.sun.com/javaee/technologies/javaee5.jsp.

31. World Wide Web Consortium (W3C), Web Services Description Language (WSDL)
Version 2.0 Part 1: Core Language, R. Chinnic, et al., Editors. 2007, W3C.

32. Object Management Group (OMG), MOF 2.0 / XMI Mapping Specification, v2.1.
2005.

33. HL7. Health Level Seven (HL7). [cited 2007 June 22]; Available from:
http://www.hl7.org.

34. OASIS Open Web Services Business Process Execution Language Version 2.0, A.
Alves, et al., Editors. 2007, OASIS.

35. Object Management Group (OMG), UML 2.1.2 Superstructure and Infrastructure.
2007, Object Management Group (OMG).

36. Mohagheghi, P. and V. Dehlen, Where Is the Proof?-A Review of Experiences from
Applying MDE in Industry. Model-Drivern Architecture-Foundations and
Applications: 4th European Conference, Ecmda-Fa 2008, Berlin, Germany, June 9-
13, 2008, Proceedings, 2008.

37. MPOWER Consortium. Middleware platform for eMPOWERing cognitive disabled
and elderly. 2006 [cited 2007 January 17]; Available from:
http://www.sintef.no/mpower.

38. Tuomainen, M., et al. Model-centric approaches for the development of health
information systems. in Medinfo. 2007. Brisbane, Australia.

39. Holthe, T., et al., Analysing user needs prior to technology development for
supporting older people and people with cognitive impairments at home. Experiences
from the MPOWER–project. International Journal of Medical Informatics, 2008.
submitted July 2008.

40. Walderhaug, S., E. Stav, and M. Mikalsen, Reusing models of actors and services in
smart homecare to improve sustainability. Stud Health Technol Inform, 2008. 136: p.
107-12.

41. Honey, A. and B. Lund, Service Oriented Architecture and HL7 v3: Methodology.
2006, HL7 Service Oriented Architecture Special Interest Group (SOA SIG). p. 79.

42. Staron, M., Improving modeling with UML by stereotype-based language
customization, in School of Engineering. 2005, Blekinge Institute of Technology:
Blekinge. p. 270.

43. Walderhaug, S., et al. Factors affecting developers' use of MDSD in the Healthcare
Domain: Evaluation from the MPOWER Project. in From code-centric to model-
centric develpoment, Workshop at European Conference on Model-Driven
Architecture. 2008. Berlin, Germany: European Software Institiute.

44. Selic, B., A Systematic Approach to Domain-Specific Language Design Using UML.
10th IEEE ISORC, 2007. 7.

45. Lagarde, F., et al., Improving uml profile design practices by leveraging conceptual
domain models. Proceedings of the twenty-second IEEE/ACM international
conference on Automated software engineering, 2007: p. 445-448.

46. Stefanov, D.H., Z. Bien, and W.-C. Bang, The smart house for older persons and
persons with physical disabilities: structure, technology arrangements, and
perspectives. IEEE transactions on neural systems and rehabilitation engineering,
2004. 12(2): p. 228-50.

 Page 85 of 87

http://www.hl7.org/Library/data-model/RIM/modelpage_mem.htm
http://java.sun.com/javaee/technologies/javaee5.jsp
http://www.hl7.org/
http://www.sintef.no/mpower

D1.1 Overall Architecture

47. Davis, F.D., R.P. Bagozzi, and P.R. Warshaw, User Acceptance of Computer
Technology: A Comparison of Two Theoretical Models. Management Science, 1989.
35(8): p. 982-1003.

48. Fuentes-Fernández, L. and A. Vallecillo-Moreno, An Introduction to UML Profiles.
UML and Model Engineering, 2004. 5(1).

49. Magnusson, L.H., E.; Borg, M, A literature review study of information and
communication technology as a support for frail older people living at home and
their family carers. Technology and disability, 2004. 16(4).

50. Wacanta, J.e.a., Number of dementia sufferers in Europe between the years 2000 and
2050. European Psychiatry, 2003. 18: p. 306-313.

51. Demiris, G., et al., Older adults attitudes towards and perceptions of smart home
technologies: a pilot study. Medical Informatics and the Internet in Medicine, 2004.
29: p. 87-94.

52. Helal, S.C., The Gator Tech Smart House: A Programmable Pervasive Space.
Computer, 2005. 38(3): p. 50.

53. Shaw, M., Abstraction techniques in modern programming languages. IEEE
Software, 1984. 1(4): p. 10-26.

54. Krueger, C.W., Software reuse. ACM Computing Surveys (CSUR), 1992. 24(2): p.
131-183.

55. Beyer, M., et al., Towards a flexible, process-oriented IT architecture for an
integrated healthcare network, in Proceedings of the 2004 ACM symposium on
Applied computing. 2004, ACM Press: Nicosia, Cyprus.

56. Lenz, R., M. Beyer, and K.A. Kuhn, Semantic integration in healthcare networks.
International journal of medical informatics, 2007. 76(2-3): p. 201-207.

57. Lenz, R., M. Beyer, and K.A. Kuhn, Semantic integration in healthcare networks.
International journal of medical informatics, 2006.

58. Lenz, R. and K.A. Kuhn, Towards a continuous evolution and adaptation of
information systems in healthcare. International journal of medical informatics, 2004.
73(1): p. 75-89.

59. The MPOWER Consoritum. MPOWER Website. 2007 [cited 2007 June 15];
Available from: http://www.mpower-project.eu.

60. Prazak, B., et al. User Requirements as Crucial Determinants for the Development of
New Technological Solutions for Elderly Care - Exemplified in an European Project.
in AAATE. 2007. San Sebastian, Spain: IOSPress.

61. Frankel, D., The MDA Journal: Model Driven Architecture Straight from the
Masters. 1st ed. 2004, Tampa, Florida, USA: Meghan-Kiffer Press. 219.

62. Walderhaug, S., et al., Traceability in Model-Driven Software Development, in
Designing Software-Intensive Systems: Methods and Principles, P. Tiako, Editor.
2008, IDEA Group: Langston.

63. Toivanen, M., et al., Gathering, Structuring and Describing Information Needs in
Home Care: A Method for Requirements Exploration in a “Gray Area”. MEDINFO
2004: Building High Performance Health Care Organizations, 2004: p. 7-11.

64. Coiera, E. and E.J. Shovenga, Building a Sustainable Health System, in IMIA
Yearbook of Medical Informatics 2007: Biomedical Informatics for Sustainable
Health Systems, A. Geissbuhler, R. Haux, and C. Kulikowski, Editors. 2007,
Schattauer Publishers. p. 250.

65. Mykkeänen, J., Specification of Resuable Integration Solutions in Health Information
Systems. Department of Computer Science. Vol. Doctoral Dissertation. 2007, Kuopio,
Finland: Kuopio University Publications, Finland 133.

66. Blobel, B., Authorisation and access control for electronic health record systems.
International Journal of Medical Informatics, 2004. 73(3): p. 251-257.

67. HSSP Project, The HSSP Roadmap: HSSP, Version 1.0. 2007, Joint HL7-OMG
Healthcare Services Specification Project. p. 13.

 Page 86 of 87

http://www.mpower-project.eu/

D1.1 Overall Architecture

 Page 87 of 87

	Release History
	MPOWER Consortium
	Table of Contents
	Table of Figures
	List of Tables
	1 Executive summary
	2 Introduction
	2.1 Role of this deliverable
	2.2 Relationship to other MPOWER deliverables
	2.3 Structure of this document

	3 MPOWER Target System
	3.1 Static Structure
	3.2 System in Use

	4 The MPOWER Framework
	4.1 MDSD HealthCare Framework
	4.2 MPOWER Architecture
	4.3 MPOWER UML Extensions
	4.4 MPOWER Middleware
	4.5 MPOWER Applications

	5 The MPOWER Development Domain: Actors and Assets
	5.1 Development Actors (stakeholders)
	5.2 Environment Actors (systems)
	5.3 Domain Assets
	5.3.1 Dictionaries
	5.3.1.1 How to use dictionaries in MPOWER

	5.3.2 Standards
	5.3.2.1 Legislations and regulations
	5.3.2.2 Information representation standards and models
	5.3.2.3 Messages exchange standard

	6 MPOWER Architecture and Platform
	6.1 MPOWER Reference Architecture
	6.1.1 Conceptual Service Model
	6.1.2 Architectural styles and principles

	6.2 MPOWER SOA Architecture
	6.2.1 Conceptual Service Architecture
	6.2.2 SOA Reference Architecture
	6.2.2.1 Application Specific Components
	6.2.2.2 Domain Specific Components
	6.2.2.3 System Specific Components

	6.3 MPOWER Information Models
	6.3.1 Process of defining information models

	7 MPOWER Middleware Services
	7.1 Communication Services - (Logical diagram)
	7.2 Information Services - (Logical diagram)
	7.3 Management Services - (Logical diagram)
	7.4 Security Services - (Logical diagram)
	7.5 Sensor Services - (Logical diagram)

	8 MPOWER Methodology
	8.1 Model-Driven Software Development
	8.1.1 OMG’s Model Driven Architecture (MDA)
	8.1.2 Model Transformation and Code Generation
	8.1.3 Meta-models, UML Profiles and UML Patterns

	8.2 SOA, MDSD and HealthCare - a way to improve the systems’ compliance to standards
	8.2.1 Conceptual Model
	8.2.2 Create UML Profile and Model Transformation from Healthcare Standard
	8.2.3 Create Healthcare Middleware Service using UML Healthcare Profile

	8.3 MDA Tool Support for Specifying Services in MPOWER
	8.3.1 Information Modelling – HL7 standard messages
	8.3.2 Modelling: Computation Independent Models - User needs
	8.3.3 Modelling: Platform Independent Models - Service Specification
	8.3.4 Modelling: Platform Specific Models - WSDL Models and Code
	8.3.5 The MPOWER Tool Chain
	8.3.6 Tool Chain Example

	8.4 Where MDA should be used in MPOWER

	9 MPOWER Application Platform
	9.1 MPOWER Recommended Deployment Platform
	9.1.1 Application Server
	9.1.2 Business Process Execution
	9.1.3 Databases and Data Access
	9.1.4 Messaging
	9.1.5 Communication networks
	9.1.6 Firewall Issues

	10 Related work
	10.1 Healthcare Service Specification Project (HSSP)
	10.2 Open Healthcare Framework

	References

